TSG-RAN Meeting #11 Palm Springs, CA, U.S.A., 13-16 March 2001

RP-010100

Title: CRs (Rel-4) for WI "RAN Technical Small Enhancements and Improvements"

- Source: TSG-RAN WG4
- Agenda item: 6.8

WI Acronym: TEI4

Doc-2nd-Level	Spec	CR	Subject		Version-	Version-
R4-010454	25.101	98	Performance requirements for Acquisition Indicator channel	F	3.5.0	4.0.0
R4-010413	25.101	97	erformance requirements for paging channel		3.5.0	4.0.0
R4-010281	25.101	96	erformance requirements BCH		3.5.0	4.0.0
R4-010252	25.102	47	E Performance Requirements for 2 Mbps		3.5.0	4.0.0
R4-010254	25.102	46	ervice Mapping for 2 Mbps		3.5.0	4.0.0
R4-010384	25.104	63	RACH implementation requirements	В	3.5.0	4.0.0

3GPP TSG RAN WG4 Meeting #16

.

R4-010281

Vienna, Austria 19th - 23rd February 2001

		CR-Form-v3		
	CHANGE REQUEST			
ж	25.101 CR 96 # rev _ # Current version: 3.5	.0 ^ж		
For <u>HELP</u> on u	using this form, see bottom of this page or look at the pop-up text over the $#$	symbols.		
Proposed change a	affects: ¥ (U)SIM ME/UE X Radio Access Network Cor	e Network		
Title: Ж	Performance requirements BCH			
Source: ೫	RAN WG4			
Work item code: %	TEI4 Date: 육 14 Febru	Jary 2001		
Category: ж	F Release: # REL-4			
F (essential correction)2(GSM Phase 2)A (corresponds to a correction in an earlier release)R96(Release 1996)B (Addition of feature),R97(Release 1997)C (Functional modification of feature)R98(Release 1998)D (Editorial modification)R99(Release 1999)Detailed explanations of the above categories canREL-4(Release 4)be found in 3GPP TR 21.900.REL-5(Release 5)				
Reason for change	e: # Performance requirements for BCH have been missing. RAN WG4 input such tests for release 4.	has agreed to		
Summary of chang	ge: # Test parameters and requirements for these tests have been added the requirements are marked as informative since testing of these re- seem to be impossible with current 3GPP specifications.	. Note that equirements		
Consequences if not approved:	* There is no information of BCH reception performance in UE core re	quirements		
Clauses affected:	ж <mark>8.11 (New)</mark>			
Other specs affected:	 Conter core specifications Test specifications O&M Specifications 			
Other comments:	ж			

8.10 Blind transport format detection

Performance of Blind transport format detection is determined by the Block Error Ratio (BLER) values and by the measured average transmitted DPCH_Ec/Ior value.

8.10.1 Minimum requirement

For the parameters specified in Table 8.37 the average downlink $\frac{DPCH - E_c}{I_{or}}$ power shall be below the specified value

for the BLER shown in Table 8.38.

Parameter	Unit	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
\hat{I}_{or}/I_{oc}	dB	-1		-3			
I _{oc}	dBm/3.84 MHz			-6	0		
Information Data Rate	kbps	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)
propagation condition	-		static		multi-p	ath fading c	case 3
TFCI	-			of	f		

Table 8.37: Test parameters for Blind transport format detection

Table 8.38: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR
1	[-17.7dB]	10 ⁻²	10 ⁻⁴
2	[-17.8 dB]	10 ⁻²	10 ⁻⁴
3	[-18.4 dB]	10 ⁻²	10 ⁻⁴
4	[-13.0 dB]	10 ⁻²	10 ⁻⁴
5	[-13.2 dB]	10 ⁻²	10 ⁻⁴
6	[-13.8 dB]	10 ⁻²	10 ⁻⁴

* The value of DPCH_Ec/Ior, Ioc, and Ior/Ioc are defined in case of DPCH is transmitted

Table 8.39: Transport format combinations informed during the call set up procedure in the test

	1	2	3	4	5	6	7	8	9
DTCH	12.2k	10.2k	7.95k	7.4k	6.7k	5.9k	5.15k	4.75k	1.95k
DCCH					2.4k				

8.11 Detection of Broadcast channel (BCH)

The receiver characteristics of Broadcast Channel (BCH) are determined by the Block Error Ratio (BLER) values. BCH is mapped into the primary common control physical channel (P-CCPCH).

8.11.1 Minimum requirement (Informative)

For the parameters specified in Table 8.40 the average downlink power P-CCPCH Ec/Ior shall be below the specified value for the BLER shown in Table 8.41.

NOTE: In this test, 9 different Transport Format Combinations (Table 8.39) are sent during the call set up procedure, so that the UE has to detect the correct transport format from these 9 candidates.

Parameter Parameter	Unit	<u>Test 1</u>	Test 2
Phase reference	<u>-</u> <u>P-CPICH</u>		ICH
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>	
\hat{I}_{or}/I_{oc}	<u>dB</u> <u>-1</u> <u>-3</u>		<u>-3</u>
Propagation condition		Static	Case 3

Table 8.40: Parameters for BCH detection

Table 8.41: Test requirements for BCH detection

Test Number	P-CCPCH_Ec/lor	<u>BLER</u>
1	<u>-18.5 dB</u>	<u>0.01</u>
2	<u>-12.8 dB</u>	<u>0.01</u>

This doesn't need to be tested.

3GPP TSG RAN WG4 Meeting #16

.

R4-010413

Vienna, Austria 19th - 23rd February 2001

						CR-Form-v3
		CHAN	IGE REC	UEST		
ж	25.10	1 CR <mark>97</mark>	ж rev	- *	Current vers	^{ion:} 3.5.0 [#]
For <u>HELP</u> on u	ising this	form, see bottom	of this page or	look at the	e pop-up text	over the # symbols.
Proposed change	affects:	₩ (U)SIM	ME/UE X	Radio Aco	cess Network	Core Network
Title: ដ	Perform	nance requireme	nts for paging o	channel		
Source: ೫	RAN W	/G4				
Work item code: %	TEI4				<i>Date:</i>	20 February 2001
Category: ж	F				Release: ೫	REL-4
	Use <u>one</u> <i>F</i> (e <i>A</i> (c <i>B</i> (/ <i>C</i> (/ <i>D</i> (/ Detailed be found	of the following cate essential correction, corresponds to a co Addition of feature), Functional modifica Editorial modificatio explanations of the in 3GPP TR 21.900	egories:) prrection in an ea tion of feature) n) above categorie).	erlier release	Use <u>one</u> of 2 9) R96 R97 R98 R99 REL-4 REL-5	the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5)
Reason for change	e: X Pe ha the	erformance requir is agreed to input e paging procedu	ements for pag such tests for re.	ging channe release 4 in	el have been n order to inc	missing. RAN WG4 rease the reliability of
Summary of chang	ge:₩ <mark>Te</mark> 8.	est parameters an Physical channel	d requirements s during the te	s for these sts have be	tests have be een added int	een added into Section to Annex A.
Consequences if not approved:	策 Th the Th ca	nere is no perform ere might be UEs nis complicates ne pacity.	ance requirem with very diffe etwork planning	ents for pa rent perforr g and has a	ging procedu mance to rec a negative eff	ire. Thus in a network eive paging messages. ect on network
Clauses affected:	ж <mark>8.</mark> 2	2, 8.11 (New), An	nex A.6 (New)			
Other specs affected:	ж Х	Other core speci Test specification O&M Specification	fications \$ ns ons	34.121		
Other comments:	ж					

8 Performance requirement

8.1 General

The performance requirements for the UE in this subclause are specified for the measurement channels specified in Annex A, the propagation conditions specified in Annex B and the Down link Physical channels specified in Annex C. Unless stated DL power control is OFF.

8.2 Demodulation in static propagation conditions

8.2.1 VoidDemodulation of Paging Channel (PCH)

The receive characteristics of the paging channel in the static environment is determined by the Paging Message Error Ratio (MER). MER is measured at the data rate specified for the paging channel. The UE sleep mode has an upper limit after which it must up wake up and demodulate the paging channel and associated paging messages.

8.2.1.1 Minimum requirement

For the parameters specified in Table 8.1 the MER shall not exceed the piece wise linear MER curve specified by the points in Table 8.2.

Parameter	Unit	Value
Phase reference		P-CPICH
$\frac{DPCH_E_c}{I_{or}}$	dB	
$\frac{SCCPCH_E_{c}}{I_{or}}$	dB	
$\frac{\hat{I}_{or}}{I_{oc}}$	dB	-1
-I _{oc}	dBm/3.84 MHz	-60
Paging Data Rate		

Table 8.1: VoidPCH parameters in static propagation conditions

Table 8.2: VoidPCH requirement in static propagation conditions

TBD	MER
TBD	TBD
TBD	TBD
TBD	TBD

8.2.2 Demodulation of Forward Access Channel (FACH)

The receive characteristics of the Forward Access Channel (FACH) in the static environment are determined by the average message error Ratio (MER). MER is measured at the data rate specified for the FACH.

8.2.2.1 Minimum requirement

For the parameters specified in Table 8.3 the MER shall not exceed the piece-wise linear MER curve specified by the points in table 8.4.

Parameter	Unit	Value
Phase reference		P-CPICH
$\frac{DPCH_E_c}{I_{or}}$	dB	
$\frac{SCCPCH_E_c}{I_{or}}$	dB	
\hat{I}_{or}/I_{oc}	dB	-1
I _{oc}	dBm/3.84 MHz	-60
Control Data Rate	?	

Table 8.3: FACH parameters in static propagation conditions

Table 8.4: FACH requirements in static propagation conditions

TBD	MER
TBD	TBD
TBD	TBD
TBD	TBD

8.10 Blind transport format detection

Performance of Blind transport format detection is determined by the Block Error Ratio (BLER) values and by the measured average transmitted DPCH_Ec/Ior value.

8.10.1 Minimum requirement

For the parameters specified in Table 8.37 the average downlink $\underline{DPCH_{E_c}}_{I_{or}}$ power shall be below the specified value

for the BLER shown in Table 8.38.

Parameter	Unit	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	
\hat{I}_{or}/I_{oc}	dB	-1				-3		
I _{oc}	dBm/3.84 MHz	-60						
Information Data Rate	kbps	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)	
propagation condition	-	static multi-path fading case			ase 3			
TFCI	-	off						

 Table 8.37: Test parameters for Blind transport format detection

Table 8.38: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR
1	[-17.7dB]	10 ⁻²	10 ⁻⁴
2	[-17.8 dB]	10 ⁻²	10 ⁻⁴
3	[-18.4 dB]	10 ⁻²	10 ⁻⁴
4	[-13.0 dB]	10 ⁻²	10 ⁻⁴
5	[-13.2 dB]	10 ⁻²	10 ⁻⁴
6	[-13.8 dB]	10 ⁻²	10 ⁻⁴

* The value of DPCH_Ec/Ior, Ioc, and Ior/Ioc are defined in case of DPCH is transmitted

Table 8.39: Transport format combinations informed during the call set up procedure in the test

	1	2	3	4	5	6	7	8	9
DTCH	12.2k	10.2k	7.95k	7.4k	6.7k	5.9k	5.15k	4.75k	1.95k
DCCH					2.4k				

8.11 Demodulation of Paging Channel (PCH)

The receiver characteristics of paging channel are determined by the probability of missed paging message (Pm-p). PCH is mapped into the S-CCPCH and it is associated with the transmission of Paging Indicators (PI) to support efficient sleep-mode procedures.

8.11.1 Minimum requirement

For the parameters specified in Table 8.40 the average probability of missed paging (Pm-p) shall be below the specified value in Table 8.41. Power of downlink channels other than S-CCPCH and PICH are as defined in Table C.3 of Annex C. S-CCPCH structure is as defined in Annex A.6.

NOTE: In this test, 9 different Transport Format Combinations (Table 8.39) are sent during the call set up procedure, so that the UE has to detect the correct transport format from these 9 candidates.

Parameter	<u>Unit</u>	<u>Test 1</u>	Test 2
Number of paging indicators per frame (Np)	<u>-</u>	<u>72</u>	
Phase reference	-	P-CPICH	
I_{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>	
\hat{I}_{or}/I_{oc}	<u>dB</u>	<u>-1</u>	<u>-3</u>
Propagation condition		<u>Static</u>	Case 3

Table 8.40: Parameters for PCH detection

Table 8.41: Test requirements for PCH detection

Test Number	S-CCPCH Ec/lor	PICH Ec/lor	<u>Pm-p</u>
<u>1</u>	<u>-14.8</u>	<u>-19.2</u>	<u>0.01</u>
2	<u>-9.8</u>	<u>-12.2</u>	<u>0.01</u>

A.5 DL reference compressed mode parameters

Parameters described in Table A.21 are used in some test specified in TS 25.101 while parameters described in Table A.22 are used in some tests specified in TS 25.133.

Set 1 parameters in Table A.21 are applicable when compressed mode by spreading factor reduction is used in downlink. Set 2 parameters in Table A.21 are applicable when compressed mode by puncturing is used in downlink.

Parameter	Set 1	Set 2	Note
TGSN (Transmission Gap Starting Slot Number)	11	11	
TGL1 (Transmission Gap Length 1)	7	7	
TGL2 (Transmission Gap Length 2)	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	0	0	Only one gap in use.
TGPL1 (Transmission Gap Pattern Length)	2	4	
TGPL2 (Transmission Gap Pattern Length)	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition	NA	NA	Defined by higher layers
Count)			
TGCFN (Transmission Gap Connection Frame	NA	NA	Defined by higher layers
Number):			
UL/DL compressed mode selection	DL & UL	DL & UL	2 configurations possible
			DL &UL / DL
UL compressed mode method	SF/2	SF/2	
DL compressed mode method	SF/2	Puncturing	
Downlink frame type and Slot format	11B	11A	
Scrambling code change	No	No	
RPP (Recovery period power control mode)	0	0	
ITP (Initial transmission power control mode)	0	0	

Table A.21: Compressed mode reference pattern 1 parameters

Table A.22: Compressed mode reference p	pattern 2 parameters
---	----------------------

Parameter	Set 1	Set 2	Note
TGSN (Transmission Gap Starting Slot Number)	4	4	
TGL1 (Transmission Gap Length 1)	7	7	
TGL2 (Transmission Gap Length 2)	-	-	Only one gap in use.
TGD (Transmission Gap Distance)	0	0	
TGPL1 (Transmission Gap Pattern Length)	3	12	
TGPL2 (Transmission Gap Pattern Length)	-	-	Only one pattern in use.
TGPRC (Transmission Gap Pattern Repetition	NA	NA	Defined by higher layers
Count)			
TGCFN (Transmission Gap Connection Frame	NA	NA	Defined by higher layers
Number):			
UL/DL compressed mode selection	DL & UL	DL & UL	2 configurations possible.
			DL & UL / DL
UL compressed mode method	SF/2	SF/2	
DL compressed mode method	SF/2	SF/2	
Downlink frame type and Slot format	11B	11B	
Scrambling code change	No	No	
RPP (Recovery period power control mode)	0	0	
ITP (Initial transmission power control mode)	0	0	

51

A.6 DL reference parameters for PCH tests

The parameters for the PCH demodulation tests are specified in Table A.23 and Table A.24.

Table A.23: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	<u>60</u>
Channel symbol rate	<u>ksps</u>	<u>30</u>
Slot Format #i	-	4
TFCI	1	<u>OFF</u>
Power offsets of TFCI and Pilot fields relative to data field	dB	<u>0</u>

Table A.24: Transport channel parameters for S-CCPCH

Parameter	<u>PCH</u>
Transport Channel Number	<u>1</u>
Transport Block Size	240
Transport Block Set Size	<u>240</u>
Transmission Time Interval	<u>10 ms</u>
Type of Error Protection	Convolution Coding
Coding Rate	<u>1/2</u>
Rate Matching attribute	<u>256</u>
Size of CRC	<u>16</u>
Position of TrCH in radio frame	fixed

3GPP TSG RAN WG4 Meeting #16

.

R4-010454

Vienna, Austria 19th - 23rd February 2001

	CR-Form
	CHANGE REQUEST
ж	25.101 CR 98 # rev - # Current version: 3.5.0 #
For <u>HELP</u> on u	sing this form, see bottom of this page or look at the pop-up text over the $#$ symbols.
Proposed change a	affects: # (U)SIM ME/UE X Radio Access Network Core Network
Title: ೫	Performance requirements for Acquisition Indicator channel
Source: ೫	RAN WG4
Work item code:ℜ	TEI4 Date: # 23 February 2001
Category: ж	F Release: # REL-4
	Ose one of the following categories:Ose one of the following releases:F (essential correction)2A (corresponds to a correction in an earlier release)R96B (Addition of feature),R97C (Functional modification of feature)R98D (Editorial modification)R99D (Editorial modification)R99D tetailed explanations of the above categories canREL-4be found in 3GPP TR 21.900.REL-5
Reason for change	: # Performance requirements for AI have been missing.
Summary of chang	e: # Test parameters and requirements for AI test have been added into Section 8.
Consequences if not approved:	* There is no performance requirements for AICH procedure. Thus in a network there might be UEs with very different performance of receiving Acquisition Indicators. This complicates network planning and has a negative effect on network capacity.
Clauses affected:	8.11 (New)
Other specs affected:	% Other core specifications % X Test specifications 34.121 O&M Specifications
Other comments:	¥

8.10 Blind transport format detection

Performance of Blind transport format detection is determined by the Block Error Ratio (BLER) values and by the measured average transmitted DPCH_Ec/Ior value.

8.10.1 Minimum requirement

For the parameters specified in Table 8.37 the average downlink $\underline{DPCH_{-}E_{c}}$ power shall be below the specified value $\underline{L_{-}}$

for the BLER shown in Table 8.38.

Parameter	Unit	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
\hat{I}_{or}/I_{oc}	dB	-1				-3	
I _{oc}	dBm/3.84 MHz	-60					
Information Data Rate	kbps	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)	12.2 (rate 1)	7.95 (rate 2)	1.95 (rate 3)
propagation condition	-	static multi-path fading case			ase 3		
TFCI	-	off					

Table 8.37: Test parameters for Blind transport format detection

Table 8.38: The Requirements for DCH reception in Blind transport format detection

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER	FDR
1	[-17.7dB]	10 ⁻²	10 ⁻⁴
2	[-17.8 dB]	10 ⁻²	10 ⁻⁴
3	[-18.4 dB]	10 ⁻²	10 ⁻⁴
4	[-13.0 dB]	10 ⁻²	10 ⁻⁴
5	[-13.2 dB]	10 ⁻²	10 ⁻⁴
6	[-13.8 dB]	10 ⁻²	10 ⁻⁴

* The value of DPCH_Ec/Ior, Ioc, and Ior/Ioc are defined in case of DPCH is transmitted

Table 8.39: Transport format combinations informed during the call set up procedure in the test

	1	2	3	4	5	6	7	8	9
DTCH	12.2k	10.2k	7.95k	7.4k	6.7k	5.9k	5.15k	4.75k	1.95k
DCCH					2.4k				

8.11 Detection of Acquisition Indicator (AI)

The receiver characteristics of Acquisition Indicator (AI) are determined by the probability of false alarm Pfa and probability of correct detection Pd. Pfa is defined as a conditional probability of detection of AI signature given that a AI signature was not transmitted. Pd is defined as a conditional probability of correct detection of AI signature given that the AI signature is transmitted.

8.11.1 Minimum requirement

For the parameters specified in Table8.40 the Pfa and 1-Pd shall not the exceed the specified values in Table 8.41. Power of downlink channels other than AICH is as defined in Table C.3 of Annex C.

NOTE: In this test, 9 different Transport Format Combinations (Table 8.39) are sent during the call set up procedure, so that the UE has to detect the correct transport format from these 9 candidates.

Table 8.	.40: Par	ameters f	or Al	detection

Parameter	Unit	Test 1
Phase reference	-	P-CPICH
I _{oc}	<u>dBm/3.84 MHz</u>	<u>-60</u>
Number of other transmitted AI signatures on AICH	=	<u>0</u>
\hat{I}_{or}/I_{oc}	<u>dB</u>	<u>-1</u>
AICH_Ec/lor	dB	-23.0
AICH Power Offset	dB	-13.0
Propagation condition	-	Static

Note that AICH Ec/Ior can not be set. Its value is calculated from other parameters and it is given for information only. (AICH Ec/Ior = AICH Power Offset + CPICH Ec/Ior)

Table 8.41: Test requirements for AI detection

Test Number	<u>Pfa</u>	<u>1-Pd</u>		
<u>1</u>	<u>0.01</u>	<u>0.01</u>		

3GPP TSG RAN WG4 Meeting #16 010254

Vienna, Austria 19th - 23rd February 2001

							CR-Form-v3				
æ	25	<mark>.102</mark>	CR <mark>46</mark>		ж rev	X	ж	Current vers	sion:	8.5.0	¥
For <u>HELP</u> on	using	this for	m, see bottom	of this	page c	r look	at th	e pop-up text	over th	е ж syr	nbols.
Proposed chang	e affec	<i>ts:</i> Ж	(U)SIM	ME/	UE X	Rad	lio Ac	cess Networ	k (Core Ne	twork
Title:	# Serv	ice Maj	pping for 2 Mbp	S							
Source:	₩ <mark>RAN</mark>	<mark>I WG4</mark>									
Work item code:	ж <mark>ТЕ</mark>	14						<i>Date:</i>	19-23	B Feb 20	01
Category:	ЖВ							Release: ೫	REL-	4	
	Use Deta be fo	one of a F (ess A (con B (Add C (Fur D (Edi iled exp bund in	the following cat ential correction, responds to a co dition of feature), nctional modification torial modificatio planations of the 3GPP TR 21.900	egories.) prrectior tion of f on) above 0.	: in in an e feature) categori	arlier re es can	elease	Use <u>one</u> of 2 R96 R97 R98 R99 REL-4 REL-5	the follo (GSM F (Releas (Releas (Releas (Releas (Releas (Releas	wing rele Phase 2) ie 1996) ie 1997) ie 1998) ie 1999) ie 4) ie 5)	eases:

Reason for change: #	Reference measurement channel for DL 2 Mbps not available.			
Summary of change: #	Added service mapping for DL 2 Mbps in Annex A.			
Consequences if #	The references are necessary for the completeness of specification			
not approved:				
Clauses affected: #	Annex A 2.6 (new)			
Other specs अ	Other core specifications #			
Affected:	Test specifications			
	O&M Specifications			
Other comments: #				

R4-

Annex A (normative): Measurement channels

- A.1 General
- A.2 Reference measurement channel

A.2.1 UL reference measurement channel (12.2 kbps)

Parameter	
Information data rate	12.2 kbps
RU's allocated	2 RU
Midamble	512 chips
Interleaving	20 ms
Power control	2 Bit/user
TFCI	16 Bit/user
Inband signalling DCCH	2 kbps
Puncturing level at Code rate 1/3 : DCH / DCCH	5% / 0%

A.2.2 DL reference measurement channel (12.2 kbps)

Parameter	
Information data rate	12.2 kbps
RU's allocated	2 RU
Midamble	512 chips
Interleaving	20 ms
Power control	0 Bit/user
TFCI	16 Bit/user
Inband signalling DCCH	2 kbps
Puncturing level at Code rate 1/3 : DCH / DCCH	5% / 0 %

A.2.3 DL reference measurement channel (64 kbps)

Parameter	
Information data rate	64 kbps
RU's allocated	5 codes SF16 = 5RU
Midamble	512 chips
Interleaving	20 ms
Power control	0 Bit/user
TFCI	16 Bit/user
Inband signalling DCCH	2 kbps
Puncturing level at Code rate : 1/3 DCH / 1/2 DCCH	41.1% / 10%

ParameterInformation data rate144 kbpsRU's allocated9 codes SF16 = 9RUMidamble256 chipsInterleaving20 msPower control0 Bit/userTFCI16 Bit/userInband signalling DCCH2 kbpsPuncturing level at Code rate: 1/3 DCH / ½ DCCH44.5% / 16.6%

A.2.4 DL reference measurement channel (144 kbps)

A.2.5 DL reference measurement channel (384 kbps)

Parameter	
Information data rate	384 kbps
RU's allocated	8*3TS = 24RU
Midamble	256 chips
Interleaving	20 ms
Power control	0 Bit/user
TFCI	16 Bit/user
Inband signalling DCCH	2 kbps
Puncturing level at Code rate : 1/3 DCH / 1/2 DCCH	43.4% / 15.3%

A.2.6 DL reference measurement channel (2 Mbps)

Parameter	
Information data rate	
	<u>2048 kbps</u>
RU's allocated	<u> 16*12TS = 192RU</u>
Midamble	256 chips
Interleaving	<u>10 ms</u>
Power control	<u>0 Bit/user</u>
TFCI	<u>16 Bit/user</u>
Inband signalling DCCH	<u>2 kbps</u>
Puncturing level at Code rate 1/3 : DCH / DCCH	<u>13.9% / 0%</u>

A.2.76BCH reference measurement channel

[mapped to 1 code SF16]

Parameter	
Information data rate:	
	12.3 kbps
RU's allocated	1 RU
Midamble	512 chips
Interleaving	20 ms
Power control	0 bit
TFCI	0 bit
Puncturing level	10%

Information data	246					
CRC attachment	246 16					
Tail bit attachment	262 8					
Convolutional Coding 1/2	[(262+8)]x2=540					
1 st Interleaving	540					
RF-segmentation	270 270					
Puncturing Ratemaching	270 bit punc. to 244 bit puncturing-level: 10%					
2 nd Interleaving	244 244					
Slot segmentation						
SF=16	122 MA 122 122 MA 122					
	512 512 chips chips					
	Radio Frame #1 Radio Frame #2					

A.2.87UL multi code reference measurement channel (12.2 kbps)

Parameter	
Information data rate	12.2 kbps
RU's allocated	2 RU
Midamble	512 chips
Interleaving	20 ms
Power control	2 Bit/user
TFCI	16 Bit/user
Inband signalling DCCH	2 kbps
Puncturing level at Code rate 1/3 : DCH / DCCH	5% / 0 %

3GPP TSG RAN WG4 Meeting #16 010252

R4-

Vienna, Austria 19th - 23rd February 2001

								CR-Form-v3				
ж	4	<mark>25.102</mark>	CR 47		Жr	ev	Χ	ж	Current ve	rsion:	3.5.0	ж
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the # symbols.												
Proposed change affects: # (U)SIM ME/UE X Radio Access Network Core Network												
Title: # UE Performance Requirements for 2 Mbps												
Source:	ж <mark>г</mark>	R <mark>AN WG4</mark>										
Work item code:	ж	TEI4							Date:	₩ <mark>19</mark> -	23 Feb 20	001
Category:	ж	F							Release:	¥ <mark>RE</mark>	L-4	
		Jse <u>one</u> of F (ess A (con B (Ad C (Fund D (Ed) Detailed exists the found in	the following ential correct responds to a dition of featu nctional modifica planations of 3GPP TR 21	categories ion) a correctio re), fication of ation) the above .900.	s: on in ar featur categ	n ear œ) jories	rlier re s can	elease	Use <u>one</u> (2 8) R96 R97 R98 R99 REL-4 REL-5	of the fo (GSN (Rele (Rele (Rele (Rele (Rele (Rele	ollowing rel A Phase 2) pase 1996) pase 1997) pase 1998) pase 1999) pase 4) pase 5)	eases:

Reason for change:	Based on simulation results, 2 Mbps UE performance requirements are proposed.
Summary of change:	UE Performance Requirements for 2 Mbps service are added in Section 8.
Consequences if	UE can not be tested for 2 Mbps without specified performance requirements.
not approved:	
Clauses affected:	8 8.1, 8.2.1.1, 8.3.2.1, 8.3.3.1
Other specs S Affected:	Conter core specifications # Test specifications # O&M Specifications •
Other comments:	£

8 Performance requirement

8.1 General

The performance requirements for the UE in this section are specified for the measurement channels specified in Annex A and the propagation condition specified in Annex B.

Information	Static	Multi-path	Multi-path	Multi-path		
Data Kate	Performance metric					
12.2 kbps	BLER<10 ⁻²	BLER<10 ⁻²	BLER<10 ⁻²	BLER<10 ⁻²		
64 kbps	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻² , 10 ⁻³		
144 kbps	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻² , 10 ⁻³		
384 kbps	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻²	BLER< 10 ⁻¹ , 10 ⁻² , 10 ⁻³		
<u>2048 kbps</u>	$\frac{\text{BLER} <}{10^{-1}, 10^{-2}}$	$\underline{\text{BLER}} \le 10^{-1}, 10^{-2}$	$\underline{\text{BLER}} \le 10^{-1}, 10^{-2}$	$\frac{\text{BLER} < 10^{-1}}{10^{-2}, 10^{-3}}$		
12.3kbps		BLER< 10 ⁻²				
	Information Data Rate12.2 kbps64 kbps144 kbps384 kbps2048 kbps12.3kbps	Information Data Rate Static 12.2 kbps BLER<10 ⁻² 64 kbps BLER<	$\begin{array}{ c c c c } \mbox{Information} \\ \mbox{Data Rate} & Static & Multi-path Case 1 \\ \hline & Case 1 \\ \hline & Case 1 \\ \hline & Perform \\ \hline & BLER < 10^{-2} & BLER < 0 \\ \hline & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline & 10^{-1}, 10^{-2} & BLER < 0 \\ \hline & 10^{-1}, 10^{-2} & BLER < 0 \\ \hline & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline & 2048 \ kbps & BLER < 0 \\ \hline & 12.3 \ kbps & BLER < 0 \\ \hline & 12.3 \ kbps & BLER < 0 \\ \hline & 10^{-2} \\$	$ \begin{array}{ c c c c } \hline \mbox{Information} \\ \mbox{Data Rate} & Static & Multi-path \\ \mbox{Case 1} & Multi-path \\ \mbox{Case 2} & Performance metric \\ \hline \mbox{Performance metric} \\ \hline \mbox{12.2 kbps} & BLER < 10^{-2} & BLER < 10^{-2} & BLER < 10^{-2} \\ \mbox{64 kbps} & BLER < & BLER & BLER < \\ \mbox{10^{-1}, 10^{-2}} & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline \mbox{144 kbps} & BLER < & BLER & BLER < \\ \mbox{10^{-1}, 10^{-2}} & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline \mbox{384 kbps} & BLER < & BLER < \\ \mbox{10^{-1}, 10^{-2}} & 10^{-1}, 10^{-2} & 10^{-1}, 10^{-2} \\ \hline \mbox{2048 kbps} & \frac{BLER < \\ \mbox{10^{-1}, 10^{-2}} & \frac{BLER < \\ \mbox{10^{-1}, 10^{-2} & BLER < \\ \mbox{10^{$		

Table 8.1: Summary of UE performance targets

8.2 Demodulation in static propagation conditions

8.2.1 Demodulation of DCH

The performance requirement of DCH in static propagation conditions is determined by the maximum Block Error Ratio (BLER). The BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

8.2.1.1 Minimum requirement

For the parameters specified in Table 8.2 the BLER should not exceed the piece-wise linear BLER curve specified in Table 8.3. These requirements are applicable for TFCS size 16.

Table 8.2: DCH parameters in static propagation conditions

Parameters	Unit	Test 1	Test 2	Test 3	Test 4	Test 5
$\frac{\Sigma DPCH_E_c}{I_{or}}$	dB	-6	-3	0	0	<u>0</u>
I _{oc}	dBm/3.84 MHz			-60		
Information Data Ra	ate kbps	12.2	64	144	384	<u>2048</u>

Test Number	$\frac{\hat{I}_{or}}{I_{oc}} [dB]$	BLER
1	0.1	10 ⁻²
2	2.3	10-1
	2.6	10 ⁻²
3	2.2	10-1
	2.4	10 ⁻²
4	1.6	10-1
	1.8	10 ⁻²
<u>5</u>	<u>3.5</u>	10^{-1}
	<u>3.6</u>	10^{-2}

Table 8.3: Performance requirements in AWGN channel.

8.3 Demodulation of DCH in multipath fading conditions

8.3.1 Multipath fading Case 1

The performance requirement of DCH is determined by the maximum Block Error Ratio (BLER). The BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

8.3.1.1 Minimum requirement

For the parameters specified in Table 8.4 the BLER should not exceed the piece-wise linear BLER curve specified in Table 8.5. These requirement are applicable for TFCS size 16.

Table 8.4: DCH	parameters in	multipath	Case 1	channel

Parameters	Unit	Test 1	Test 2	Test 3	Test 4	Test 5
$\frac{\Sigma DPCH _ E_c}{I_{or}}$	DB	-6	-3	0	0	<u>0</u>
I _{oc}	dBm/3.84 MHz			-60		
Information Data Rate	kbps	12.2	64	144	384	<u>2048</u>

Table 8.5: Performance requirements in multipath Case 1 channel.

Test Number	$\frac{\hat{I}_{or}}{I_{oc}} [dB]$	BLER
1	13.5	10-2
2	13.3	10-1
	19.6	10-2
3	13.3	10-1
	19.7	10-2
4	13.5	10-1
	20.2	10-2
<u>5</u>	<u>13.2</u>	10^{-1}
	17.8	10^{-2}

8.3.2 Multipath fading Case 2

The performance requirement of DCH is determined by the maximum Block Error Ratio (BLER). The BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

8.3.2.1 Minimum requirement

For the parameters specified in Table 8.6 the BLER should not exceed the piece-wise linear BLER curve specified in Table 8.7. These requirements are applicable for TFCS size 16.

Table 8.6: DCH parameters in multipath Case 2 channel

Parameters	Unit	Test 1	Test 2	Test 3	Test 4	Test 5
$\frac{\Sigma DPCH _ E_c}{I_{or}}$	DB	-3	0	0	0	<u>0</u>
I _{oc}	dBm/3.84 MHz			-60		
Information Data Rate	kbps	12.2	64	144	384	2048

 Table 8.7: Performance requirements in multipath Case 2 channel.

Test Number	$\frac{\hat{I}_{or}}{I_{oc}} [dB]$	BLER
1	5.5	10-2
2	5.8	10-1
	9.7	10-2
3	9.5	10-1
	13.2	10-2
4	8.5	10-1
	12.6	10-2
<u>5</u>	<u>10.3</u>	10^{-1}
	12.7	10^{-2}

8.3.3 Multipath fading Case 3

The performance requirement of DCH is determined by the maximum Block Error Ratio (BLER). The BLER is specified for each individual data rate of the DCH. DCH is mapped into the Dedicated Physical Channel (DPCH).

8.3.3.1 Minimum requirement

For the parameters specified in Table 8.8 the BLER should not exceed the piece-wise linear BLER curve specified in Table 8.9. These requirements are applicable for TFCS size 16.

Table 8.8: DCH parameters in multipath Case 3 channel

Parameters	Unit	Test 1	Test 2	Test 3	Test 4	Test 5
$\frac{\Sigma DPCH _ E_c}{I_{or}}$	dB	-3	0	0	0	<u>0</u>
I_{oc}	dBm/3.84 MHz			-60		
Information Data Rate	kbps	12.2	64	144	384	2048

Test Number	$\frac{\hat{I}_{or}}{I}$ [dB]	BLER
	I _{oc}	
<u>1</u> 12.2 kbps	4.7	10 ⁻²
<u>2</u> 64 kbps	5.2	10-1
	8.4	10-2
	12.1	10 ⁻³
<u>3144 kbps</u>	11.7	10-1
	15.2	10 ⁻²
	17.8	10 ⁻³
<u>4</u> 384 kbps	8.2	10-1
	11.3	10-2
	13.0	10 ⁻³
5	9.4	10^{-1}
	<u>11.5</u>	10^{-2}
	<u>13.6</u>	10^{-3}

Table 8.9: Performance requirements in multipath Case 3 channel.

8.4 Base station transmit diversity mode

8.4.1 Demodulation of BCH in Block STTD mode

The performance requirement of BCH is determined by the maximum Block Error Rate (BLER). The BLER is specified for the BCH. BCH is mapped into the Primary Common Control Physical Channel (P-CCPCH).

8.4.1.1 Minimum requirement

For the parameters specified in Table 8.10 the BLER should not exceed the BLER specified in Table 8.11.

Parameters	Unit	Test 1
$\frac{PCCPCH_E_c}{I_{or}}$	dB	-3
Ι	dBm/3.84 MHz	-60
Information Data Rate	Kbps	12.3

Table 8.10: P-CCPCH parameters in multipath Case 1 channel

Table 8.11: Performance requirements in multipath Case 1 channel.

Test Number	$\frac{\hat{I}_{or}}{I_{oc}} [dB]$	BLER
1	8.4	10 ⁻²

8.5 *Power control in downlink*

Power control in the downlink is the ability of the UE receiver to converge to the required link quality set by the network while using minimum downlink power.

8.5.1 Minimum requirements

For the parameters specified in Table 8.12 the average downlink \hat{I}_{or}/I_{oc} power shall not exceed the values specified in Table 8.13. Downlink power control is ON during the test.

Parameter	Unit	Test 1	Test 2
$\frac{DPCH_E_c}{I_{or}}$	dB	0 []	
I _{oc}	dBm/3.84 MHz	-6	60
Information Data Rate	kbps	12.2	
Target quality value on DTCH	BLER	0.01	
Propagation condition		Cas	se 4

Table 8.12: Test parameters for downlink power control

Table 8.13: Requirements for downlink power control

Parameter	Unit	Test 1	Test 2	
\hat{I}_{or}/I_{oc}	dB	[]	[]	
Measured quality on DTCH	BLER	0.01±30%	0.01±30%	

3GPP TSG RAN WG4 Meeting #16

R4-010384

Vienna, Austria 19th - 23rd February 2001

		CHAN	IGE REG	UEST		CR-Form-v
¥	25.104	CR <mark>63</mark>	ж rev	- #	Current vers	^{ion:} 3.5.0 [#]
For <u>HELP</u> on u	sing this fo	rm, see bottom	of this page o	r look at the	e pop-up text	over the X symbols.
Proposed change a	affects: ೫	(U)SIM	ME/UE	Radio Ac	cess Network	Core Network
Title: #	RACH im	plementation re	quirements			
Source: ೫	RAN WG	4				
Work item code: ℜ	TEI4				<i>Date:</i>	20.2.2001
Category: #	В				Release: ೫	REL-4
	Use <u>one</u> of F (ess A (con B (Ad C (Fu D (Ed Detailed ex be found in	the following cate sential correction) rresponds to a co dition of feature), nctional modification planations of the 3GPP TR 21.900	egories: rrection in an e tion of feature) n) above categori).	arlier releas es can	Use <u>one</u> of 2 e) R96 R97 R98 R99 REL-4 REL-5	the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5)
Reason for change	: ೫ <mark>Nor</mark>	<mark>equirements ha</mark>	ve been defin	ed for RAC	Н	
Summary of chang	e:	H requirements	are added fo	<mark>r preamble</mark>	detection and	d message reception.
Consequences if not approved:	ж					
Clauses affected:	ж					
Other specs affected:	# O T O	ther core specif est specificatior &M Specificatio	ications and	£		
Other comments:	ж					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1 Introduction

In last meetings of WG4 there has been discussion about how to test RACH and corresponding simulation results. These results and test strategies are gathered in [1].

This CR proposes implementation margins for probability of detection (Pd) and required Eb/No's in static channel and case 3 fading for message reception.

The rest of this contribution is organized as follows: chapter 2 summarizes the averages simulation result for both probability of preamble detection and RACH message reception. Chapter 3 proposes implementation margins and final required Ec/N0's and Eb/N0's are summarized in tables of chapter 4.

2 Summary of simulations

2.1 Probability of detection

Probability of false alarm of preamble was set to 10⁻³. Required Ec/N0 for probability of detection of the preamble was simulated. Only one signature was used and it was known by the receiver. The numbers in tables are averages all simulations.

Table 1. Ec/No's for preamble detection for $Pfa=10^{-3}$ in static propagation condition.

	Pd = 0.99	Pd = 0.999
Average	-24.5 dB	-24.1 dB

Table 2. Ec/No's for preamble detection for $Pfa=10^{-3}$ in case 3 fading.

	Pd = 0.99	Pd = 0.999
Average	-20.6 dB	-18.4 dB

2.2 RACH message reception

RACH message reception was measured so that consecutive pairs of preambles and messages were sent. The receiver then tries to detect the preamble and receive the message correctly. Pfa is set to 10^{-3} . Only those messages for which the preamble was detected are taken into account when BLER is calculated.

Payloads to be used in the tests are 168 bits and 360 bits. TTI is 20 ms. CRC is 16 bits.

Table 3. Eb/N0's for message reception in static propagation condition (ideal parameter estimation)

	TB size = 168 bits		TB size = 360 bits	
	BLER=10 ⁻¹ BLER=10 ⁻²		BLER=10 ⁻	BLER=10 ⁻²
Average	1.1 dB	2.0 dB	0.9 dB	1.8 dB

Table 4. Eb/N0's for message reception in fading case 3 (ideal parameter estimation)

	TB size = 168 bits		TB size = 360 bits	
	BLER=10 ⁻¹ BLER=10 ⁻²		BLER=10 ⁻	BLER=10 ⁻²
Average	1.4	2.5	1.3	2.3

3 Implementation margins

In [2] implementation margin for Pd in fading channel case 3 was proposed to be 3.5 dB. We propose that for static channel and for fading case 3 the margin to be 4 dB.

For RACH message reception we propose implementation margins of 3 dB and 6 dB for static and case 3 fading, respectively.

4 Requirement for RACH receiver

Requirement is average of simulated ideal result + implementation margin:

Table 5. Ec/No's for preamble detection for $Pfa=10^{-3}$ in static propagation condition.

	Pd = 0.99	Pd = 0.999
Static propagation	-20.5 dB	-20.1 dB

Table 6. Ec/No's for preamble detection for $Pfa=10^{-3}$ in case 3 fading.

	Pd = 0.99	Pd = 0.999
Fading, case 3.	-16.6 dB	-14.4 dB

Table 7. Eb/N0's for message reception in static propagation condition.

	TB size = 168 bits		TB size = 360 bits	
	BLER=10 ⁻¹	BLER=10 ⁻²	BLER=10 ⁻¹	BLER=10 ⁻²
Average	3.1 dB	5.0 dB	3.9 dB	4.8 dB

Table 8. Eb/N0's for message reception in fading case 3.

	TB size = 168 bits		TB size = 360 bits	
	BLER=10 ⁻¹	BLER=10 ⁻²	BLER=10 ⁻¹	BLER=10 ⁻²
Average	7.4	7.5	7.3	8.3

5 References

- [1] TR25.845 FDD RACH and AICH Performance Requirements, version 0.0.3
- [2] RACH Preamble Simulation Results, Tdoc R4-010177, Motorola

8.x Performance requirement for RACH

Performance requirements for RACH consists of two parts: preamble detection and message demodulation. Requirements for these are in chapters 8.x.1 and 8.x.2, respectively. Requirements are defined for two propagation conditions: static and fading case 3. The propagation conditions are defined in annexes B.1 and B.2.

8.x.1 Performance requirement for RACH preamble detection

Probability of false alarm, Pfa (=false detection of the preamble) when the preamble was not sent, shall be 10^{-3} or less. The performance measure Required Ec/N0 at probability of detection, Pd of 0.99 and 0.999. Only 1 signature is used and it is known by the receiver. The requirement for preamble detection, when the preamble was sent is in table 8.x.1 and 8.x.2 for static and case 3 fading.

Table 8.x.1. Requirements for Ec/N0 of Pd in static propagation condition

	<u>Pd = 0.99</u>	<u>Pd = 0.999</u>
Required Ec/N0	<u>-20.5 dB</u>	<u>-20.1 dB</u>

Table 8.x.2. Requirements of Ec/N0 of Pd in case 3 fading

	<u>Pd = 0.99</u>	<u>Pd = 0.999</u>
Required Ec/N0	<u>-16.6 dB</u>	<u>-14.4 dB</u>

8.x.2 Demodulation of RACH message

The performance measure is required Eb/N0 for block error rate (BLER) of 10^{-1} and 10^{-2} . Both measurement channels have TTI=20 ms. Payloads are 168 and 360 bits. Channel coding is rate $\frac{1}{2}$ convolutional coding.

8.x.2.1 Minimum requirements for Static Propagation Condition

Table 8.x.3. Required Eb/N0 for static propagation

TB size = 168 bits	TB size = 360 bits

	BLER=10 ⁻¹	BLER=10 ⁻²	BLER=10 ⁻¹	BLER=10 ⁻²
Required Eb/N0	<u>3.1 dB</u>	<u>5.0 dB</u>	<u>3.9 dB</u>	<u>4.8 dB</u>

8.x.2.2 Minimum requirements for Multipath Fading Case 3

Table 8.x.4. Required Eb/N0 for case 3 fading

	TB size = 168 bits		TB size = 360 bits	
	BLER=10 ⁻¹	BLER=10 ⁻²	BLER=10 ⁻¹	BLER=10 ⁻²
Required Eb/N0	<u>7.4 dB</u>	<u>7.5 dB</u>	<u>7.3 dB</u>	<u>8.3 dB</u>