TSG-RAN Meeting \#6

Nice, France, 13-15 December 1999

Title:	Agreed CRs of category "D" (Editorial) to TS 25.221
Source:	TSG-RAN WG1
Agenda item:	5.1.3

Spec	CR	Rev	Phase	Subject	Cat	Version-Current	Version-New	Doc
25.221	010	-	R99	Introduction of the timeslot formats to TDD	D	3.0 .0	3.1 .0	R1-99168

NOTE: The source of this document is TSG-RAN WG1. The source shown on each CR cover sheet is the originating organisation.

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form : ftp://ftp.3gpp.org/Information/CR-Form-v2.doC

| Proposed change affects: | $(\mathrm{U}) \mathrm{SIM} \square \quad \mathrm{ME} \quad \mathbf{X} \quad$ UTRAN / Radio $\square \mathbf{X} \quad$ Core Network \square |
| :--- | :--- | :--- |

Source:
Nokia, Siemens
Date: 03.12.1999
Subject: Introduction of the timeslot formats to the TDD specifications
Work item: TS25.221

Category: (only one category shall be marked with an X)

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Reason for In order to keep the harmonisation between the FDD and TDD specs it would be very change: useful to have the timeslot formats in the TDD specifications

Clauses affected: $\quad 5.2 .2 .3,5.2 .3,5.2 .4,5.3$

Other specs	Other 3G core specifications affected: Other GSM core specifications MS test specifications BSS test specifications O\&M specifications	\square	\rightarrow List of CRs:
	\rightarrow	\rightarrow List of CRs:	
	\rightarrow	\rightarrow List of CRs:	
	\rightarrow	\rightarrow List of CRs:	

Other

comments:

5.2.2.3 Timeslot formats

5.2.2.3.1 Downlink timeslot formats

The downlink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits, as depicted in the table 4a.

Table 4a: Time slot formats for the Downlink

$\frac{\text { Slot Format }}{\#}$	$\frac{\text { Spreading }}{\text { Factor }}$	$\begin{gathered} \hline \text { Midamble } \\ \text { length (chips) } \end{gathered}$	$\underline{\mathrm{N}}_{\text {TFCI }}$ (bits)	Bits/slot	$\underline{N}_{\text {Data/Slot }}$ (bits)	$\begin{aligned} & \hline \hline \mathrm{N}_{\text {data/data field }} \\ & \text { (bits) } \end{aligned}$
$\underline{0}$	16	512	$\underline{0}$	244	244	122
1	$\underline{16}$	512	4	244	240	$\underline{120}$
$\underline{2}$	16	512	8	244	236	118
$\underline{3}$	$\underline{16}$	512	$\underline{16}$	$\underline{244}$	$\underline{228}$	114
4	$\underline{16}$	512	$\underline{32}$	$\underline{244}$	$\underline{212}$	$\underline{106}$
$\underline{5}$	16	256	$\underline{0}$	276	276	138
$\underline{6}$	16	256	4	276	272	136
$\underline{7}$	16	256	$\underline{8}$	276	268	134
$\underline{8}$	$\underline{16}$	$\underline{256}$	16	$\underline{276}$	$\underline{260}$	$\underline{130}$
$\underline{9}$	$\underline{16}$	$\underline{256}$	$\underline{32}$	$\underline{276}$	$\underline{244}$	$\underline{122}$
$\underline{10}$	1	512	$\underline{0}$	3904	3904	1952
11	1	512	4	3904	3900	1950
12	1	512	8	3904	3896	1948
13	1	512	16	3904	3888	1944
14	1	512	32	3904	3872	1936
15	1	$\underline{256}$	$\underline{0}$	4416	4416	2208
16	1	256	4	4416	4412	2206
17	1	$\underline{256}$	$\underline{8}$	$\underline{4416}$	4408	2204
$\underline{18}$	$\underline{1}$	$\underline{256}$	$\underline{16}$	4416	4400	$\underline{2200}$
$\underline{19}$	1	$\underline{256}$	32	4416	4384	$\underline{2192}$

5.2.2.3.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length, the TPC presence and on the number of the TFCI bits. In the case that TPC is used, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 4 b .

Table 4b: Timeslot formats for the Uplink

Slot Format$\#$	Spreading Factor	$\frac{\text { Midamble }}{\frac{\text { length }}{\text { (chips) }}}$	$\frac{\mathrm{N}_{\mathrm{TFCl}}}{(\text { bits })}$	$\mathrm{N}_{\text {TPC }}$ (bits)	Bits/slot	$\begin{aligned} & \underline{\mathbf{N}_{\text {Data/Slot }}} \\ & \underline{(\text { bits })} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{N}_{\text {data/data }} \\ & \underline{\text { field(1) }} \\ & \text { (bits) } \end{aligned}$	$\underline{N}_{\text {data/data }}$ field(2) (bits)
$\underline{0}$	16	512	$\underline{0}$	$\underline{0}$	244	$\underline{244}$	$\underline{122}$	122
1	16	512	4	$\underline{0}$	244	240	120	120
$\underline{2}$	16	512	8	$\underline{0}$	244	236	118	118
3	16	512	16	$\underline{0}$	244	228	$\underline{114}$	114
4	16	512	32	$\underline{0}$	244	$\underline{212}$	$\underline{106}$	$\underline{106}$
5	16	512	$\underline{0}$	$\underline{2}$	244	242	122	120
$\underline{6}$	16	512	4	$\underline{2}$	$\underline{244}$	$\underline{238}$	$\underline{120}$	118
7	16	512	8	$\underline{2}$	$\underline{244}$	$\underline{234}$	$\underline{118}$	$\underline{116}$
8	16	512	16	$\underline{2}$	244	226	114	112
$\underline{9}$	16	512	32	$\underline{2}$	244	$\underline{210}$	$\underline{106}$	104
10	16	256	$\underline{0}$	$\underline{0}$	276	276	138	138
11	16	$\underline{256}$	4	$\underline{0}$	276	272	$\underline{136}$	$\underline{136}$
12	16	256	8	$\underline{0}$	276	268	134	134
$\underline{13}$	16	$\underline{256}$	16	$\underline{0}$	276	260	$\underline{130}$	$\underline{130}$
14	16	256	32	$\underline{0}$	$\underline{276}$	$\underline{244}$	$\underline{122}$	122
15	16	256	$\underline{0}$	$\underline{2}$	276	274	138	136
16	16	256	4	$\underline{2}$	276	270	136	134
17	16	$\underline{256}$	8	$\underline{2}$	$\underline{276}$	$\underline{266}$	$\underline{134}$	$\underline{132}$
18	16	$\underline{256}$	16	$\underline{2}$	276	$\underline{258}$	130	$\underline{128}$
19	16	256	32	$\underline{2}$	276	$\underline{242}$	$\underline{122}$	$\underline{120}$
$\underline{20}$	8	512	$\underline{0}$	$\underline{0}$	488	488	$\underline{244}$	$\underline{244}$
21	8	512	4	$\underline{0}$	488	484	242	242
$\underline{22}$	8	512	8	$\underline{0}$	488	480	240	240
$\underline{23}$	8	512	16	$\underline{0}$	488	$\underline{472}$	$\underline{236}$	$\underline{236}$
$\underline{24}$	8	512	32	$\underline{0}$	488	456	$\underline{228}$	228
$\underline{25}$	8	512	$\underline{0}$	$\underline{2}$	488	486	244	242
$\underline{26}$	8	512	4	$\underline{2}$	488	482	242	$\underline{240}$
27	8	512	8	$\underline{2}$	488	478	240	$\underline{238}$
$\underline{28}$	8	512	16	$\underline{2}$	488	470	236	234
29	8	512	32	$\underline{2}$	488	454	228	226

30	$\underline{8}$	256	$\underline{0}$	$\underline{0}$	552	552	276	$\underline{276}$
31	8	$\underline{256}$	4	$\underline{0}$	552	548	274	$\underline{274}$
32	$\underline{8}$	$\underline{256}$	8	$\underline{0}$	552	544	$\underline{272}$	$\underline{272}$
33	$\underline{8}$	$\underline{256}$	16	$\underline{0}$	552	536	268	$\underline{268}$
34	$\underline{8}$	$\underline{256}$	$\underline{32}$	$\underline{0}$	552	520	260	$\underline{260}$
35	$\underline{8}$	$\underline{256}$	$\underline{0}$	$\underline{2}$	552	550	276	$\underline{274}$
36	8	$\underline{256}$	4	$\underline{2}$	552	546	274	$\underline{272}$
37	$\underline{8}$	$\underline{256}$	$\underline{8}$	$\underline{2}$	552	542	272	$\underline{270}$
38	$\underline{8}$	$\underline{256}$	$\underline{16}$	$\underline{2}$	552	534	268	$\underline{266}$
39	$\underline{8}$	$\underline{256}$	$\underline{32}$	$\underline{2}$	$\underline{552}$	518	260	$\underline{258}$
40	4	512	$\underline{0}$	$\underline{0}$	$\underline{976}$	976	488	488
41	4	512	4	$\underline{0}$	$\underline{976}$	$\underline{972}$	486	486
42	4	512	8	$\underline{0}$	$\underline{976}$	968	484	484
43	4	512	$\underline{16}$	$\underline{0}$	976	$\underline{960}$	480	480
44	4	512	$\underline{32}$	$\underline{0}$	$\underline{976}$	$\underline{944}$	472	472
45	4	512	$\underline{0}$	$\underline{2}$	$\underline{976}$	974	488	486
46	$\underline{4}$	512	4	$\underline{2}$	$\underline{976}$	$\underline{970}$	486	484
47	4	512	$\underline{8}$	$\underline{2}$	$\underline{976}$	$\underline{966}$	484	$\underline{482}$
48	$\underline{4}$	512	16	$\underline{2}$	$\underline{976}$	$\underline{958}$	480	478
49	4	512	$\underline{32}$	$\underline{2}$	$\underline{976}$	942	472	470
50	4	$\underline{256}$	$\underline{0}$	$\underline{0}$	1104	1104	552	552
51	4	$\underline{256}$	4	$\underline{0}$	1104	1100	550	550
52	4	$\underline{256}$	$\underline{8}$	$\underline{0}$	1104	$\underline{1096}$	548	548
53	$\underline{4}$	$\underline{256}$	$\underline{16}$	$\underline{0}$	1104	1088	544	544
54	$\underline{4}$	$\underline{256}$	32	$\underline{0}$	1104	1072	536	536
55	4	$\underline{256}$	$\underline{0}$	$\underline{2}$	1104	1102	552	550
$\underline{56}$	$\underline{4}$	$\underline{256}$	4	$\underline{2}$	1104	$\underline{1098}$	550	548
57	4	$\underline{256}$	$\underline{8}$	$\underline{2}$	1104	$\underline{1094}$	548	546
58	4	$\underline{256}$	$\underline{16}$	$\underline{2}$	1104	$\underline{1086}$	544	542
$\underline{59}$	4	$\underline{256}$	32	$\underline{2}$	1104	1070	536	534
60	$\underline{2}$	512	$\underline{0}$	$\underline{0}$	$\underline{1952}$	1952	$\underline{976}$	$\underline{976}$
61	$\underline{2}$	512	4	$\underline{0}$	1952	1948	974	$\underline{974}$
62	$\underline{2}$	512	$\underline{8}$	$\underline{0}$	1952	1944	$\underline{972}$	$\underline{972}$
63	$\underline{2}$	512	$\underline{16}$	$\underline{0}$	1952	1936	$\underline{968}$	$\underline{968}$
64	$\underline{2}$	512	$\underline{32}$	$\underline{0}$	1952	1920	960	$\underline{960}$
65	$\underline{2}$	512	$\underline{0}$	$\underline{2}$	1952	1950	976	$\underline{974}$
66	$\underline{2}$	512	4	$\underline{2}$	$\underline{1952}$	1946	$\underline{974}$	$\underline{972}$
67	$\underline{2}$	512	$\underline{8}$	$\underline{2}$	1952	1942	$\underline{972}$	$\underline{970}$

68	$\underline{2}$	512	16	$\underline{2}$	$\underline{1952}$	1934	$\underline{968}$	966
69	$\underline{2}$	512	32	$\underline{2}$	1952	1918	$\underline{960}$	958
$\underline{70}$	$\underline{2}$	$\underline{256}$	$\underline{0}$	$\underline{0}$	2208	$\underline{2208}$	$\underline{1104}$	1104
71	$\underline{2}$	256	4	$\underline{0}$	2208	2204	1102	1102
$\underline{72}$	$\underline{2}$	$\underline{256}$	$\underline{8}$	$\underline{0}$	$\underline{2208}$	$\underline{2200}$	$\underline{1100}$	1100
73	$\underline{2}$	$\underline{256}$	16	$\underline{0}$	2208	2192	$\underline{1096}$	1096
74	$\underline{2}$	$\underline{256}$	32	$\underline{0}$	$\underline{2208}$	$\underline{2176}$	$\underline{1088}$	1088
75	$\underline{2}$	256	$\underline{0}$	$\underline{2}$	2208	2206	1104	1102
$\underline{76}$	$\underline{2}$	$\underline{256}$	4	$\underline{2}$	$\underline{2208}$	$\underline{2202}$	1102	1100
77	$\underline{2}$	$\underline{256}$	$\underline{8}$	$\underline{2}$	2208	$\underline{2198}$	1100	1098
78	$\underline{2}$	$\underline{256}$	16	$\underline{2}$	2208	$\underline{2190}$	$\underline{1096}$	1094
79	$\underline{2}$	$\underline{256}$	32	$\underline{2}$	2208	2174	1088	1086
$\underline{80}$	1	512	$\underline{0}$	$\underline{0}$	3904	3904	$\underline{1952}$	$\underline{1952}$
$\underline{81}$	$\underline{1}$	512	4	$\underline{0}$	3904	3900	$\underline{1950}$	1950
82	1	512	$\underline{8}$	$\underline{0}$	3904	3896	1948	1948
$\underline{83}$	1	512	16	$\underline{0}$	3904	3888	1944	1944
84	1	512	32	$\underline{0}$	3904	3872	1936	1936
85	1	512	$\underline{0}$	$\underline{2}$	3904	3902	$\underline{1952}$	1950
$\underline{86}$	1	512	4	$\underline{2}$	3904	3898	$\underline{1950}$	1948
87	$\underline{1}$	512	$\underline{8}$	$\underline{2}$	3904	3894	1948	1946
88	1	512	16	$\underline{2}$	3904	3886	1944	1942
89	1	512	32	$\underline{2}$	3904	3870	1936	1934
$\underline{90}$	1	$\underline{256}$	$\underline{0}$	$\underline{0}$	$\underline{4416}$	4416	$\underline{2208}$	2208
$\underline{91}$	$\underline{1}$	$\underline{256}$	4	$\underline{0}$	4416	4412	$\underline{2206}$	$\underline{2206}$
$\underline{92}$	1	$\underline{256}$	8	$\underline{0}$	$\underline{4416}$	4408	$\underline{2204}$	$\underline{2204}$
$\underline{93}$	1	256	16	$\underline{0}$	4416	4400	2200	2200
$\underline{94}$	1	$\underline{256}$	32	$\underline{0}$	$\underline{416}$	$\underline{4384}$	$\underline{2192}$	$\underline{2192}$
$\underline{95}$	1	$\underline{256}$	$\underline{0}$	$\underline{2}$	$\underline{4416}$	4414	$\underline{2208}$	$\underline{2206}$
$\underline{96}$	1	$\underline{256}$	4	$\underline{2}$	4416	4410	2206	2204
$\underline{97}$	1	$\underline{256}$	8	$\underline{2}$	4416	4406	2204	2202
$\underline{98}$	$\underline{1}$	$\underline{256}$	16	$\underline{2}$	4416	4398	$\underline{2200}$	2198
99	1	$\underline{256}$	32	$\underline{2}$	4416	$\underline{4282}$	$\underline{2192}$	$\underline{2190}$

5.2.3 Training sequences for spread bursts

As explained in the section 5.2.1, two options are being considered for the spreading. The training sequences presented here are common to both options.

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of one single periodic basic code. Different cells use different periodic basic codes, i.e. different midamble sets. In this way a joint channel estimation for the channel impulse responses of all active users within one time slot can be done by one single cyclic correlation. The different user specific channel impulse response estimates are obtained sequentially in time at the output of the correlator. Following this principle it is shown hereafter how to derive the midambles from the periodic basic code.
Section 5.2.2 contains a description of the spread speech/data bursts. These bursts contain Lm midamble chips, which are also termed midamble elements. The Lm elements $\underline{m}_{i}^{(k)} ; \mathrm{i}=1, \ldots, \mathrm{Lm} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; of the midamble codes $\underline{\mathbf{m}}^{(k)}$; $\mathrm{k}=1, \ldots, \mathrm{~K}$; are taken from the complex set

$$
\begin{equation*}
\underline{\mathrm{V}}_{\mathrm{m}}=\{1, \mathrm{j},-1,-\mathrm{j}\} . \tag{1}
\end{equation*}
$$

K is the maximum number of users, i.e. the available number of spreading codes per time slot.
The elements $\underline{m}_{i}^{(k)}$ of the complex midamble codes $\underline{\mathbf{m}}^{(k)}$ fulfil the relation

$$
\begin{equation*}
\underline{m}_{i}^{(k)}=(\mathrm{j})^{i} \cdot m_{i}^{(k)} m_{i}^{(k)} \in\{1,-1\}, i=1, \ldots, L_{m} ; k=1, \ldots, K . \tag{2}
\end{equation*}
$$

Hence, the elements $\underline{m}_{i}^{(k)}$ of the complex midamble codes $\underline{\mathbf{m}}^{(k)}$ of the K users are alternating real and imaginary.
With W being the number of taps of the impulse response of the mobile radio channels, the Lm binary elements $m_{i}^{(k)} ; \mathrm{i}=1, \ldots, L_{\mathrm{m}} ; k=1, \ldots, K$; of (2) for the complex midambles $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; of the K users are generated according to the following method from a single periodic basic code

$$
\begin{equation*}
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor}\right)^{\mathrm{T}} m_{i} \in\{1,-1\}, i=1, \ldots,\left(L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor .\right. \tag{3}
\end{equation*}
$$

$\lfloor\mathrm{x}\rfloor$ denotes the largest integer smaller or equal to $\mathrm{x}, \mathrm{K}^{\prime}=\mathrm{K} / 2$.
The elements $m_{i} ; i=1, \ldots,\left(L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor\right.$, of (3) fulfil the relation

$$
\begin{equation*}
m_{i}=m_{i-P} \text { for the subset } i=(P+1), \ldots,\left(L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor\right) . \tag{4}
\end{equation*}
$$

The P elements $m_{i} ; i=1, \ldots, P$, of one period of m according to (3) are contained in the vector

$$
\begin{equation*}
\mathbf{m}_{\mathrm{P}}=\left(m_{1}, m_{2}, \ldots, m_{P}\right)^{\mathrm{T}} \tag{5}
\end{equation*}
$$

With \mathbf{m} according to (3) the Lm binary elements $m_{i}^{(k)} ; \mathrm{i}=1, \ldots, \mathrm{~L}_{\mathrm{m}} ; k=1, \ldots, K$; of (2) for the midambles of the first K' users are generated based on the following formula

$$
\begin{equation*}
m_{i}^{(k)}=m_{i+(K-k) W} \quad i=1, \ldots, L_{m} ; k=1, \ldots, K \tag{6}
\end{equation*}
$$

The midambles for the second K^{\prime} users are generated based on a slight modification of this formula introducing intermediate shifts

$$
\begin{equation*}
m_{i}^{(k)}=m_{i+\left(K^{\prime}-k\right) W+\lfloor P / K\rfloor} \quad i=1, \ldots, L_{m} ; k=K^{\prime}+1, \ldots, K . \tag{7}
\end{equation*}
$$

Whether intermediate shifts are allowed in a cell is broadcast on the BCH.
In the following the term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)}$; $\mathrm{k}=1, \ldots, \mathrm{~K}$. Different midamble code sets $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; are specified based on different periods \mathbf{m}_{P} according (5). In adjacent cells of the cellular mobile radio system, different midamble codes sets $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; should be used to guarantee a proper channel estimation.

As mentioned above a single midamble code set $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; consisting of K midamble codes is based on a single period \mathbf{m}_{P} according to (5).

In the Annex A the periods \mathbf{m}_{P} according to (5), i.e. the Basic Midamble Codes, which shall be used to generate different midamble code sets $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$; are listed in tables in a hexadecimal representation. As shown in table $\underline{5} 4$ always 4 binary elements m_{i} are mapped on a single hexadecimal digit.

Table 5 4: Mapping of 4 binary elements m_{i} on a single hexadecimal digits

4 binary elements m_{i}	Mapped on hexadecimal digit
-1-1-1-1	0
-1-1-1 1	1
-1-1 1 -1	2
-1-1-111	3
-1 1-1-1	4
-1 1-1-1 1	5
-1 1 1 1-1	6
$\begin{array}{lllll}-1 & 1 & 1\end{array}$	7
1-1-1-1	8
1-1-1 1	9
1-1 1-1	A
1-111	B
1-1-1	C
1 1-11	D
11^{1-1}	E
1111	F

As different Basic Midamble Codes are required for different burst formats, the Annex A shows the codes $m_{\text {PL }}$ for burst type 1 and $m_{\text {PS }}$ for burst type 2 . It should be noted that the different burst types must not be mixed in the same timeslot of one cell.

5.2.3.1 Midamble Transmit Power

If in the downlink all users in one time slot have a common midamble, the transmit power of this common midamble is such that there is no power offset between the data part and the midamble part of the transmit signal within the time slot.

In the case of user specific midambles, the transmit power of the user specific midamble is such that there is no power offset between the data parts and the midamble part for this user within one slot.

5.2.4 Beamforming and Transmit Diversity

When DL beamforming or TX Diversity is used, at least that user to which beamforming/Tx Diversity is applied and which has a dedicated channel shall get one individual midamble according to chapter 5.2.3, even in DL.

5.3 Common control physical channels (CCPCH)

5.3.1 Downlink common control physical channel

Either the BCH, the PCH or the FACH as described in section 4.1.2 are mapped onto one or more downlink common control physical channels (CCPCH). In such a way the capacity of BCH, PCH and FACH can be adopted depending on the operators need.

5.3.1.1 Spreading codes

The downlink CCPCH uses fixed spreading with a spreading factor $\mathrm{SF}=16$ as described in section 5.2.1.1.

5.3.1.2 Burst Types

The burst type 1 as described in section 5.2.2 is used for the downlink CCPCH. No TFCI is applied for CCPCHs.

5.3.1.3 Training sequences for spread bursts

The training sequences, i.e. midambles, as described in section 5.2.3 are used for the downlink CCPCH.

5.3.1.4 Primary Common Control Physical Channels (PCCPCH)

A CCPCH is referred to as Primary Common Control Physical Channel (PCCPCH) if it is characterised by:

- Transmitted with reference power
- No beamforming
- Known position (timeslot, burst format and code) in frame. The position is known from the Synchronisation Channel (SCH), see section 5.4.
- Carrying BCH

If another physical channel is allocated to the same channelisation code and same timeslot as a PCCPCH, i.e. the same physical resource is used in a multiframe pattern, then this channel has also to use reference power and no beamforming can be applied.

5.3.2 The physical random access channel (PRACH)

The RACH or in case of ODMA networks the ORACH as described in section 4.1.2 are mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH and ORACH can be flexibly scaled depending on the operators need.
This description of the physical properties of the PRACH also applies to bursts carrying other signaling or user traffic if they are scheduled on a time slot which is (partly) allocated to the RACH or ORACH.

5.3.2.1 PRACH Spreading codes

The uplink PRACH uses either spreading factor $\mathrm{SF}=16$ or $\mathrm{SF}=8$ as described in section 5.2.1.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH).

5.3.2.2 PRACH Burst Types

The mobile stations send the uplink access bursts randomly in the PRACH. The PRACH burst consists of two data symbol fields, a midamble and a guard period. The second data symbol field is shorter than the first symbol data field by 96 chips in order to provide additional guard time at the end of the PRACH time slot.

The precise number of collision groups depends on the spreading codes (i.e. the selected RACH configuration. The access burst is depicted in figure 10 , the contents of the access burst fields are listed in table $\underline{87}$ and table $\underline{9} 8$.

Figure 12: PRACH burst, GP denotes the guard period

Table 87: number of symbols per data field in PRACH burst

Spreading factor (Q)	Number of symbols in data field 1	Number of symbols in data field 2
8	122	110
16	61	55

Table 98: The contents of the PRACH burst field

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
$0-975$	976	cf table 1	Data symbols
$976-1487$	512	-	Midamble
$1488-2367$	880	cf table 1	Data symbols
$2368-2559$	192	-	Guard period

5.3.2.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes used for PRACH bursts are the same as for burst type 1 and are shown in Annex A. The necessary time shifts are obtained by choosing either all $\mathrm{k}=1,2,3 \ldots, \mathrm{~K}$ ' (for cells with small radius) or uneven $\mathrm{k}=1,3,5, \ldots \leq \mathrm{K}$ ' (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets.

For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code m_{2} is the time inverted version of Basic Midamble Code m_{1}.
In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators.

5.3.2.4 Association between Training Sequences and Spreading Codes

For the PRACH there exists a fixed association between the training sequence and the spreading code. The generic rule to define this association is based on the order of the spreading codes $\mathbf{a}_{\mathrm{Q}}{ }^{(k)}$ given by k and the order of the midambles $\mathbf{m}_{j}^{(k)}$ given by k, firstly, and j, secondly, with the constraint that the midamble for a spreading factor Q is the same as in the upper branch for the spreading factor $2 Q$. The index $j=1$ or 2 indicates whether the original Basic Midamble Sequence $(\mathrm{j}=1)$ or the time-inverted Basic Midamble Sequence is used $(\mathrm{j}=2)$.

- For the case that all k are allowed and only one periodic basic code m_{1} is available for the RACH, the association depicted in figure 13 is straightforward.
- For the case that only odd k are allowed the principle of the association is shown in figure 14 . This association is applied for one and two basic periodic codes.

Figure 13: Association of Midambles to Spreading Codes in the OVSF tree for all \boldsymbol{k}

Figure 14: Association of Midambles to Spreading Codes in the OVSF tree for odd \boldsymbol{k}

5.4 The physical synchronisation channel (PSCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. Additional information, received from higher layers on SCH transport channel, is also transmitted to the UE in PSCH in case 3 from below. In order not to limit the uplink/downlink asymmetry the PSCH is mapped on one or two downlink slots per frame only.
There are three cases of PSCH and PCCPCH allocation as follows:
Case 1) PSCH and PCCPCH allocated in TS\#k, $k=0 \ldots .14$
Case 2) PSCH in two TS and PCCPCH in the same two TS: TS\#k and TS\#k $+8, \mathrm{k}=0 \ldots 6$
Case 3) PSCH in two TS, TS\#k and TS\#k $+8, \mathrm{k}=0 \ldots 6$, and the PCCPCH in TS\#i, $\mathrm{i}=0 \ldots 14$, pointed by PSCH. Pointing is determined via the SCH from the higher layers.

These three cases are addressed by higher layers using the SCCH in TDD Mode. The position of PSCH (value of k) in frame can change on a long term basis in any case.

Due to this PSCH scheme, the position of PCCPCH is known from the PSCH. The PCCPCH are using burst type 1, spreading code $a_{Q=16}^{(k=1)}$ and midamble $m_{1}^{(1)}$. To simplify measurements of PCCPCH power, this midamble shall not be used by other physical channels in the same timeslot.
Figure 15 is an example for transmission of $\mathrm{PSCH}, \mathrm{k}=0$, of Case 2 or Case 3.

Figure 15: Scheme for Physical Synchronisation channel PSCH consisting of one primary sequence C_{p} and $N=3$ parallel secondary sequences in slot k and $k+8$
(example for $\mathrm{k}=0$ in Case 2 or Case 3)
As depicted in figure 15 , the PSCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in TS 25.223 chapter 7 'Synchronisation codes'. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset $\mathrm{t}_{\text {offset }}$ enables the system to overcome the capture effect.

The time offset $\mathrm{t}_{\text {offset }}$ is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'table 7 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $\mathrm{t}_{\text {offset }}$ ' in [8]. The exact value for $\mathrm{t}_{\text {offset }}$, regarding column 'Associated $\mathrm{t}_{\text {offset }}$ ' in table 7 from-in [8] is given by:

$$
\begin{aligned}
t_{\text {offset,n}} & =n \cdot T_{c}\left\lfloor\frac{2560-96-256}{31}\right\rfloor \\
& =n \cdot 71 T_{c} ; \quad n=0, \ldots, 31
\end{aligned}
$$

Please note that $\lfloor x\rfloor$ denotes the largest integer number less or equal to x and that T_{c} denotes the chip duration.

