TD TSG RAN-99033 UMTS XX.10 V1.0.0 (1999-02)

Technical Report

UMTS Terrestrial Radio Access Network (UTRAN); UTRA TDD, multiplexing, channel coding and interleaving description (UMTS XX.10 version 1.0.0)

Reference

DTR/SMG-02XX10U (03c00i04.PDF)

Keywords

Digital cellular telecommunications system, Universal Mobile Telecommunication System (UMTS), UTRAN

ETSI

Postal address F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Internet

secretariat@etsi.fr Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 1999. All rights reserved.

Contents

Intellectual Property Rights		
Forew	vord	. 4
1	Scope	. 5
2	References	. 5
3	Definitions and abbreviations	. 5
3.1	Definitions	. 5
3.2	Abbreviations	. 5
4	Status of this document	. 6
4.1	General	.6
4.2	Transport channel coding/multiplexing	. 6
4.2.1	CRC calculation	. 6
4.2.2	channel coding	.6
4.2.3	1st interleaving	.6
4.2.4	rate matching	.6
4.2.5	transport channel multiplexing	. /
4.2.6	2nd interleaving	. /
4.5	automatic repeat request	. / 7
4.4		. /
5	Multiplexing, channel coding and interleaving	. 7
5.1	General	.7
5.2	Transport-channel coding/multiplexing	.7
5.2.1	CRC calculation	. 8
5.2.2	Channel coding	. 8
5.2.2.1	Convolutional coding	.9
5.2.2.2	2 Outer Reed Solomon coding and outer interleaving	.9
5.2.2.3	3 Turbo coding	.9
5.2.2.4	Service specific coding	.9
5.2.3	1 th interleaving	.9
5.2.4	Rate matching algorithm	.9 10
52.4.1	Transport channel multiplaying	10
526	2 nd interleaving	10
5.2.0	Automatic Repeat Request (ARO)	11
5.5	Coding for layer 1 control	11
5.4.1	Transport-format-indicator coding	11
Histor	ry	12

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in SR 000 314: "*Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards*", which is available **free of charge** from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Special Mobile Group (SMG). The present document describes multiplexing, channel coding and interleaving for UTRA Physical Layer TDD mode. The contents of the present document are subject to continuing work within SMG2 and SMG2 UMTS layer 1 expert group and may change following approval by either of these two groups.

1 Scope

This Technical Report describes multiplexing, channel coding and interleaving for UTRA Physical Layer TDD mode. Text without revision marks has been approved in the previous SMG2 Layer 1 expert group meetings, while text with revision marks is subject to approval.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
- A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.
- [1] Reference 1.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document the following terms and definitions apply: **Definition 1:** to be completed

3.2 Abbreviations

For the purposes of the present document the following terms and definitions apply: <Editor's note: This section covers TDD relevant abbreviations only.>

ARQ	Automatic Repeat on Request
BCCH	Broadcast Control Channel
BER	Bit Error Rate
BPSK	Binary Phase Shift Keying
BS	Base Station
BSS	Base Station Subsystem
CA	Capacity Allocation
CAA	Capacity Allocation Acknowledgement
CBR	Constant Bit Rate
CCCH	Common Control Channel
CD	Capacity Deallocation
CDA	Capacity Deallocation Acknowledgement
CDMA	Code Division Multiple Access
CTDMA	Code Time Division Multiple Access
CRC	Cyclic Redundancy Check
DCA	Dynamic Channel Allocation
DCCH	Dedicated Control Channel
DL	Downlink
DRX	Discontinuous Reception
DTX	Discontinuous Transmission
FACH	Forward Access Channel
FDD	Frequency Division Duplex
FDMA	Frequency Division Multiple Access
FEC	Forward Error Control
FER	Frame Error Rate
GMSK	Gaussian Minimum Shift Keying

FЛ	TZT
ட்	51

JDJoint DetectionL1Layer 1L2Layer 2LLCLogical Link ControlMAMultiple AccessMACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Resource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMSynchronization ChannelSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSDCCHSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	HCS	Hierarchical Cell Structure
L1Layer 1L2Layer 2LLCLogical Link ControlMAMultiple AccessMACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile EreminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Resource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSDCCHStand-alone Dedicated Control ChannelSDCCHSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	JD	Joint Detection
L2Layer 2LLCLogical Link ControlMAMultiple AccessMACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRadio FrequencyRLCRadio Essource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMSynchronization ChannelSDCCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	L1	Layer 1
LLCLogical Link ControlMAMultiple AccessMACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRadio FrequencyRLCRadio Esource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMSynchronization ChannelSDCCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	L2	Layer 2
MAMultiple AccessMACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRadio FrequencyRLCRadio Esource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMRadio Resource ControlRRMSynchronization ChannelSDCCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	LLC	Logical Link Control
MACMedium Access ControlMAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Resource ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MA	Multiple Access
MAHOMobile Assisted HandoverMOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRadio FrequencyRLCRadio Esource ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MAC	Medium Access Control
MOMobile OriginatedMOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MAHO	Mobile Assisted Handover
MOHOMobile Originated HandoverMSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MO	Mobile Originated
MSMobile StationMTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	МОНО	Mobile Originated Handover
MTMobile TerminatedNRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MS	Mobile Station
NRTNon-Real TimePCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	MT	Mobile Terminated
PCPower ControlPCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRMRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	NRT	Non-Real Time
PCHPaging ChannelODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	PC	Power Control
ODMAOpportunity Driven Multiple AccessQoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	PCH	Paging Channel
QoSQuality of ServiceQPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	ODMA	Opportunity Driven Multiple Access
QPSKQuaternary Phase Shift KeyingRACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	QoS	Quality of Service
RACHRandom Access ChannelRFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	QPSK	Quaternary Phase Shift Keying
RFRadio FrequencyRLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RACH	Random Access Channel
RLCRadio Link ControlRRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RF	Radio Frequency
RRCRadio Resource ControlRRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RLC	Radio Link Control
RRMRadio Resource ManagementRTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RRC	Radio Resource Control
RTReal TimeRUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RRM	Radio Resource Management
RUResource UnitSCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RT	Real Time
SCHSynchronization ChannelSDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	RU	Resource Unit
SDCCHStand-alone Dedicated Control ChannelSPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	SCH	Synchronization Channel
SPSwitching PointTCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	SDCCH	Stand-alone Dedicated Control Channel
TCHTraffic channelTDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	SP	Switching Point
TDDTime Division DuplexTDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	TCH	Traffic channel
TDMATime Division Multiple AccessULUplinkUMTSUniversal Mobile Telecommunications System	TDD	Time Division Duplex
ULUplinkUMTSUniversal Mobile Telecommunications System	TDMA	Time Division Multiple Access
UMTS Universal Mobile Telecommunications System	UL	Uplink
	UMTS	Universal Mobile Telecommunications System
VBR Variable Bit Rate	VBR	Variable Bit Rate

4 Status of this document

4.1 General

4.2 Transport channel coding/multiplexing

working assumption

4.2.1 CRC calculation

study item

4.2.2 channel coding

proposal

4.2.3 1st interleaving

study item

4.2.4 rate matching

working assumption

7

4.2.5 transport channel multiplexing

working assumption

4.2.6 2nd interleaving

study item

4.3 automatic repeat request

study item (still to be decided whether this is within the layer 1 scope)

4.4 coding for layer 1 control

study item

5 Multiplexing, channel coding and interleaving

5.1 General

This section describes the services multiplexing, channel coding/interleaving and rate matching. In the UTRA-TDD mode, the total number of basic physical channels (a certain time slot one spreading code on a certain carrier frequency) per frame is given by the maximum number of time slots which is 16 and the maximum number of CDMA codes per time slot. This maximum number of codes is 8 in case the different codes within one time slot are allocated to different users in the uplink and is higher than 8 (e.g. 9 or 10) in the downlink or if several codes are allocated to one single user in the uplink.

The service classes given in the following represent only a selection of all possibilities which are conceivable. Two types of traffic bursts are used. They are described in "Physical Channels" section.

5.2 Transport-channel coding/multiplexing

Figure 1 illustrates the overall concept of transport-channel coding and multiplexing. Data arrives to the coding/multiplexing unit in form of transport block sets, once every transmission time interval. The transmission time interval is transport-channel specific from the set {10 ms, 20 ms, 40 ms, 80 ms}.

The following coding/multiplexing steps can be identified:

- Add CRC to each transport block;
- Channel coding. This may include interleaving for turbo code;
- Interleaving (two steps);
- Transport-channel multiplexing;
- Mapping to physical channels.

The different steps are described in detail below.

Figure 1: Coding and multiplexing of transport channels

Primarily, transport channels are multiplexed as described above, i.e. into one data stream mapped on one or several physical channels. However, an alternative way of multiplexing services is to use multiple CCTrCHs (Coded Composite Transport Channels), which corresponds to having several parallel multiplexing chains as in Figure 1, resulting in several data stream, each mapped to one or several physical channels.

5.2.1 CRC calculation

[No text available]

5.2.2 Channel coding

The following options are available for the transport-channel specific coding, see also Figure 2:

- Convolutional coding;
- Outer Reed Solomon coding | Outer interleaving | Convolutional coding;
- Turbo coding (FFS);
- Service-specific coding, e.g. unequal error protection for some types of speech codecs.

In Real Time (RT) services a FEC coding is used, instead Non Real Time (NRT) services could be well managed with a proper combination of FEC and ARQ.

For the RT services two levels of QoS (10^{-3} , 10^{-6}) have been considered as examples in Figure 2. Only convolutional coding is used in case of BER= 10^{-3} , while a concatenated code scheme (Reed-Solomon, outer interleaving and convolutional coding) or Turbo codes could be used to achieve BER= 10^{-6} .

5.2.2.1 Convolutional coding

The convolutional coding rates change according to the rates of different services. The convolutional coding rates from 1/4 to 1 have been chosen such that the complete system will be able to use as much as possible the same decoding structure.

5.2.2.2 Outer Reed Solomon coding and outer interleaving

The outer RS coding, on $GF(2^8)$ has different rate for different services. An outer interleaver to break the error burst at the output of the Viterbi decoder is needed in addition to an inner interleaver for breaking the error bursts due to fading.

5.2.2.3 Turbo coding

[FFS]

5.2.2.4 Service specific coding

The service-specific-coding option allows for additional flexibility of the UTRA layer 1 by allowing for additional coding schemes, in addition to the standard coding schemes listed above. One example is the use of unequal-error-protection coding schemes for certain speech-codecs.

5.2.3 1st interleaving

1st interleaving is carried out on a per-transport-channel basis. The exact interleaver structure is TBD.

5.2.4 Rate matching

The rate matching applies repetition and puncturing of the different transport channels. For each combination of rates of the different transport channels, a puncturing/repetition factor is assigned to each transport channel. The set of puncturing/repetition factors is determined based on following criteria:

- desired transmission quality requirements of each transport channel is fulfilled and not significantly exceeded. This means that required transmission power to meet quality requirements for all transport channels is as low as possible.
- on uplink and downlink, the total number of allocated resource units should be minimised.
- the puncturing factors should not exceed a certain maximum puncturing factor, specific for each transport channel.

5.2.4.1 Rate matching algorithm

Let's denote:

 $S_N = \{N_1, N_2, \dots, N_L\}$ = ordered set (in ascending order from left to right) of allowed number of bits per block N_C = number of bits per matching block

 $S_0 = \left\{ d_1, d_2, \dots, d_{N_C} \right\}$ = set of N_C data bits

P = maximum amount of puncturing allowed (tentatively 0.2, for further study) The rate matching rule is as follows:

find N_i and N_{i+1} so that $N_i \le N_C < N_{i+1}$

$$if\left(\frac{N_i}{N_C} > 1 - P\right)$$

$$y = N_C - N_i$$

 $e = N_C$ -- initial error between current and desired puncturing ratio -- this offset is flexible, e.g. e = 2Ncm = 1 -- index of current bit do while $m \le N_C$ e = e - 2 * y-- update error if $e \le 0$ then -- check if bit number m should be punctured puncture bit m from set S_0 $e = e + 2*N_C$ -- update error end if m = m + 1-- next bit end do else $y = N_{i+1} - N_C$ $e = N_C$ -- initial error between current and desired puncturing ratio -- this offset is flexible, e.g. e = 2Nc-- index of current bit m = 1 do while $m \le N_C$ e = e - 2 * y-- update error -- check if bit number m should be repeated do while $e \le 0$ repeat bit m from set S₀ $e = e + 2*N_{C}$ -- update error enddo m = m + 1-- next bit

```
end do
```

end if

5.2.5 Transport-channel multiplexing

The coded transport channels are serially multiplexed within one radio frame. The output after the multiplexer (before the 2^{nd} interleaver) will thus be according to Figure 3.

•	← 10 ms (one radio frame)			
ſ	TrCh-1	TrCh-2]	TrCh-M
Figure 2. Trepenent channel multiplewing				

Figure 3: Transport channel multiplexing

5.2.6 2nd interleaving

The 2^{nd} interleaving is carried out over one radio frame (10 ms) and is applied to the multiplexed set of transport channels.

5.3 Automatic Repeat Request (ARQ)

The details of the UTRA ARQ schemes are not yet specified. Therefore, the impact on layer 1, e.g. if soft combining of retransmitted packets is to take place, is not yet fully specified.

5.4 Coding for layer 1 control

5.4.1 Transport-format-indicator coding

[FFS]

History

Document history			
1998-06-08	Document created based on the documents Tdoc SMG 899/97, Tdoc SMG2 UMTS-L1 36/98 and Tdoc SMG2 UMTS L1 87/98. Approved by SMG2 #26 (Sunne, Sweden) for ITU submission only.		
1998-06-22	Updated with modifications agreed upon at the SMG2 UMTS L1 #4 meeting in Turin, June 15 17.		
1998-07-01	Updated due to comments via e-mail reflector prior to submission to SMG2 UMTS Ad-Hoc #6 (Stratford, July 6 8.)		
1998-08-17	'UTRA Physical Layer Description, TDD part' was split into several subdocuments; xx.xx. This new subdocument xx.10 contains chapter 9 of the former TDD master document v.0.2.1. Only editorial modifications are made (adding foreword, scope).		
1998-09-17	The revision marks accepted at the UMTS-L1meeting in Helsinki removed, provided to SMG2 meeting in Marseille.		
1998-11-05	Status of this document was added here from xx.18.		
1998-12-09	Revision marks accepted at the UMTS-L1 meeting in Sophia Antipolis removed.		
1999-01-19	Restructuring of document according to TDoc 030/99		
1999-01-20	Restructuring accepted at UMTS-L1 meeting in Espoo		
	history 1998-06-08 1998-06-22 1998-06-22 1998-07-01 1998-07-01 1998-08-17 1998-09-17 1998-09-17 1998-11-05 1998-12-09 1999-01-19 1999-01-20		

Editor for UTRA TDD, multiplexing, channel coding and interleaving description, is:

Anu Virtanen

Nokia Telecommunications

Email: anu.virtanen @ ntc.nokia.com

The present document is written in Microsoft Word 97.

Document history			
<vm.t.e></vm.t.e>	<mmmm yyyy=""></mmmm>	Publication	