R5w050002

RAN5 IMSCC Workshop#01
19-20, Sophia Antipolis, France

Title:

IMS ATS Test Model and Design Considerations

Source:

MCC task 160

1 Introduction

The 1st IMS CC test example is submitted with this document together for the evaluation. The purpose of the document is to record the work assumptions for generation of the 1st IMS CC test example in TTCN3.
Essentially, the document should answer the questions:
1. which test model is the basis when writing the IMS CC TCs.

2. What is the interfaces between the TTCN-3 TCs and the SS beneath

3. What is done in the TTCN-3 scripts and what is expected from the SS. The requirements on the SS implementations are highlighted in yellow.
Because of the time limit, there are still quite a number of questions left open, such as
1. How to handle domain name requests

2. How to handle DHCP

3. How to enable/disable UDP checksum

4. How to enable/disable SigComp

5. How to include and to interface the application RAB (2nd PDP context) in the test model

......
These open questions should gradually be answered before the next IMS CC workshop in Jan 06.
The attached IMS CC 1st test example in TTCN-3 consists of 5 ttcn files (modules), Main, TestCases, Steps, IMS_CC_TypesAndConf and IMS_CC_Templates. The Main module contains the entries of each test case and the control of the test case selections (test applicability). The TestCases module contains all test cases, in our case, the example. The Step module contains all test steps and functions, among others, the pre- and post-ambles. The IMS_CC_TypesAndConf module contains all necessary definitions of the types and the test configurations. Finally, the IMS_CC_Templates module has all test data, similar to the test constraints in TTCN-2.
Fig. 1 IMS CC test model

[image: image1.wmf]

SIP

client

port

SIP

server

port

SIP

Secure

client

port

SIP

Secure

server port

IP

-

CAN

con

trol

port

IP

config

ur

ation

port

UDP

I

P

v4/v6

/

IPsec

SAD

PHY

MAC

NAS

RRC

RLC

RLC

L1

RLC/MAC

GMM

SNDCP

RR

GRR

L2

LLC

UTRAN

GERAN

RF cable to UE

UDP

port

s

IMS_CC ATS

(

TTCN

-

3 code

s)

IF0

IF

1

IF2

…

UE

u

nder

test

SS

MMI

 / AT

.

.

.

.

.

.

.

.

2 Test model
The test model in R5-051819 for IMS_CC testing has been further developed and the latest result is shown in Fig.1.

2.1 Ports interfacing to SS
In TTCN-3, ports are defined in all test components and in the Test System Interface. This is the equivalent of PCOs in TTCN-2. These ports then have to be mapped, or connected, together at the start of each test.

2.1.1 Data ports
IMS_CC ATS in TTCN-3 simulates the SIP behaviour at the P_CSCF side. The scripts of SIP signalling in TTCN-3 communicate with the UE under test through four data ports and the emulations beneath. In case of MO testing, the SIP server port and SIP secure server port are applied. In case of MT testing, the SIP client port and SIP secure client port are applied. Each port shall be able to distinguish the use of one of the dual protocol stacks of IPv4 / IPv6. The security ports shall be used by the TTCN-3 authors when a security association has been established.
2.1.2 Control ports
IMS_CC ATS also controls the SS configuration and passes necessary parameters to the various emulation entities in the SS. This is done by ASPs through an IP-CAN control port and an IP configuration port.
From the protocol stack point of view, SIP is an application layer protocol located above transport layer UDP which in turn uses the services provided by the IP/IPsec layer. The IP packages are transmitted via the connected IP-CAN bearer, the UTRAN bearer or the GERAN bearer. The emulations of these protocol layers in the SS shall be compliant with the relevant core specifications (3GPP and IETF).
The IP-CAN bearers are created, configured modified and released though the ASP at the IP-CAN control port. The TTCN-3 codes shall also be able to control the UDP/IP/IPsec configurations and provide necessary parameters through the control ASPs.
2.2 SAD

Security Association Database (SAD) shall be made accessible by the IPsec entity and contain sets of parameters corresponding to each security association. During registration/authentication, the UE and the SS will negotiate these parameters for setting up a security association. As the negotiation is carried out on SIP level (through SIP message exchanges), the resulting security parameters are obtained and stored in IMS_CC ATS. A number of ASPs are defined to convey these parameters from TTCN-3 codes to SAD. ASPs manipulating the SAD are also defined.
2.3 Network interface

Similar to the majority of TCP/IP stack implementations, a network interface (IF0, IF1, IF2, ...) structure is used to connect the IP-CAN bearer to IP protocol entity. When the ASP for setting up an IP-CAN bearer is called via the IP-CAN control port, the SS shall connect the established radio access bearer to the relevant IF structure, in order to provide the radio bearer connectivity to the IP/IPsec layer.
2.4 Control ASP
ASPs for configuring/controlling the SS are defined to operate in a pair of ASPs, Req (request) ASP and Cnf (Confirm) ASP of the blocking mode. The TTCN-3 execution after sending a Req ASP shall wait (be blocked) for the Cnf ASP.
3 Design considerations

3.1 Port Configuration
The ports currently defined in the master test component (mtc) are:

Client, Server

These UDP Ports are used to transmit/receive unsecured messages to the UE, when the SS is behaving as a Client, or Server, respectively.
SecClient, SecServer

These UDP Ports are used to transmit/receive secured messages to the UE, when the SS is behaving as a Client, or Server, respectively. These ports shall only be used when security (integrity/ciphering/both) has been configured.
IPCANctl

This configuration port is used to transmit/receive the configuration ASPs to the SS.

IPconf

This configuration port is used to transmit the Security Association parameters (used in IPsec) and its IP address (used whilst transmitting messages) to the SS.
No parallel test components (ptc) have yet been defined, therefore only the ports in the main test component (mtc) shall be mapped to the test system interface (system) at the start of the test (only those ports used during the test case need to be mapped).

3.2 Config ASP definitions:

A number of Configuration ASPs have been defined to be used mainly in the test case preamble and postamble. However, because the IMS Test Suite is radio access technology independent, few parameters are passed from the TTCN-3. Therefore the exact configuration procedures used are determined by the implementation.

The PIXIT px_RANTech (see below) is set by the operator and is passed through the TTCN to the SS. This is defined as an enumerated type and is used to specify whether the rest is run on either a GERAN or UTRAN platform.

The enumerated type BearerInfo (see below) is simply a list of RAB identifiers. It is expected, in the future, for these identifiers to equate to specific RAB requirements, for all available radio access technologies. For example :
	RAB Id
	RANTech = UTRAN
	RANTech = GERAN

	RAB_No1
	34.108, clause 6.10.2.4.59
	51.010, clause a.a.a

	RAB_No2
	34.108, clause 6.10.2.4.60
	51.010, clause b.b.b

	RAB_No3
	34.108, clause 6.10.z.z.z
	51.010, clause c.c.c

Therefore the ActivatePDPContext ASP simply specifies the RANTech and BearerInfo. The SS shall then determine (with reference to default procedures specified, in for example 34.108) how this shall be achieved and exactly what configuration shall be used.
If an SS simulator makes use of the existing TTCN-2 test steps to establish the RAB, the same ASP and parameters are applied.
	Name
	CreateCellReq

	Port
	IPCANctl

	Comment
	ASP type for creating a cell

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	RANTech
	ranTech
	

	Name
	CreateCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of CreateCellReq

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	Status
	status
	

	Name
	IdleUpdatedReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS to bring the UE into an idle updated state and both GMM and MM registered

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	RANTech
	ranTech
	

	Name
	IdleUpdatedCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of IdleUpdatedReq

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	Status
	status
	

	Name
	ActivatePDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which sets up a radio connection, activates PDP context and transmit the P_CSCF address via PDP context activation

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	RANTech
	ranTech
	

	BearerInfo
	bearerInfo
	

	IPv6Addr
	p_CSCFaddrv6
	

	IPv6Addr
	UEaddrv6
	

	Name
	ActivatePDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivatePDPContextReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	ReleaseCellReq

	Port
	IPCANctl

	Comment
	ASP type for releasing resources allocated to the cell

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	Name
	ReleaseCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseCellReq

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	Status
	status
	

	Name
	DeactivatePDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS deactivate the PDP context indicated by bearerInfo

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	BearerInfo
	bearerInfo
	

	Name
	DeactivatePDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of DeactivatePDPContextReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	ReleaseResourceReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS release the resources indicated by the bearerInfo

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	BearerInfo
	bearerInfo
	

	Name
	ReleaseResourceCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseResourceReq

	Parameter Name
	Parameter Type
	Comment

	integer
	cellId
	

	Status
	status
	

	Name
	DoubleAddSADReq

	Port
	IPconf

	Comment
	ASP type which sets two entries of SAD in the SS

	Parameter Name
	Parameter Type
	Comment

	SA
	sa1
	

	SA
	sa2
	

	Name
	DoubleAddSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DoubleAddSADReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	InstallKeyReq

	Port
	IPconf

	Comment
	ASP type which installs the keys into the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	bitstring
	MD5_96Key
	length (128)

	bitstring
	SHA_1_96Key
	length (160)

	bitstring
	DES_EDE3_CBCKey
	length (192)

	bitstring
	AES_CBCKey
	length (128)

	Name
	InstallKeyCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of InstallKeyReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	AssignIPaddrReq

	Port
	IPconf

	Comment
	ASP type which assigns the IP address to the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	IPv6Addr
	p_CSCFaddrv6
	optional

	IPv4Addr
	p_CSCFaddrv4
	optional

	Name
	AssignIPaddrCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of AssignIPaddrReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	DelSADReq

	Port
	IPconf

	Comment
	ASP type which deletes the SAD entries

	Parameter Name
	Parameter Type
	Comment

	SPI
	spi1
	

	SPI
	spi2
	optional

	SPI
	spi3
	optional

	SPI
	spi4
	optional

	SPI
	spi5
	optional

	SPI
	spi6
	optional

	SPI
	spi7
	optional

	SPI
	spi8
	optional

	SPI
	spi9
	optional

	Name
	DelSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DelSADReq

	Parameter Name
	Parameter Type
	Comment

	Status
	status
	

	Name
	RANTech

	Type
	enumerated

	Parameters
	GERAN, UTRAN

	Comment
	Indicates the radio access network technology used for transport of SIP signalling messages over the air interface

	Name
	BearerInfo

	Type
	enumerated

	Parameters
	RAB_No1, RAB_No2, RAB_No3

	Comment
	References the RAB to be configured. This is RAN independent and can be added to/reduced as required

	Name
	Status

	Type
	enumerated

	Parameters
	success, failure

	Comment
	Indicates the status result of the requesting ASP

	Name
	IntAlgo

	Type
	enumerated

	Parameters
	hmac_md5_96, hmac_sha_1_96

	Comment
	Integrity algorithms

	Name
	CiphAlgo

	Type
	enumerated

	Parameters
	des_ede3_cbc, aes_cbc, nociph

	Comment
	Ciphering algorithms, "nociph" means no ciphering

	Name
	IPv6Addr

	Type
	charstring

	Comment
	in colon separated format

	Name
	IPv4Addr

	Type
	charstring

	Comment
	in dotted decimal format

	Name
	IPaddr

	Type
	union

	Parameters
	IPv6Addr , IPv4Addr

	Comment
	

	Name
	SPI

	Type
	integer (0..4294967295)

	Comment
	security parameter index for IPsec

	Name
	SA

	Type
	record

	Comment
	parameters for a security association

	Parameter Name
	Parameter Type
	Comment

	SA
	spi
	

	IPAddr
	desIPaddr
	

	integer
	srcUDPport
	

	integer
	desUDPport
	

	IntAlgo
	intAlgo
	

	CiphAlgo
	ciphAlgo
	

3.3 PIXITs
The following PIXITs have been defined so far:

	Name
	Type
	Comment

	px_RANTech
	RANTech
	enumerated type, either UTRAN or GERAN

	px_SIP_URI
	charstring
	used in Test Req 1

	px_Private_UserId
	charstring
	used in Test Req 2

	px_Public_UserId
	charstring
	used in Test Req 3 & 4

	px_UE_IPAddr
	IPv6Addr
	used in Test Req 5 & 6

	px_SS_IPAddr
	IPv6Addr
	

3.4 Message ASP definitions
SIP messages are defined as either a Request or a Response.

The Request message type is defined as:

Request Line = Method SP Request-URI SP SIP-Version CR LF

Message Header

CR LF

Message Body (optional)

and the Response message type is defined as:

Status Line = SIP-Version SP Status-Code SP Reason-Phrase CR LF

Message Header

CR LF

Message Body (optional)

where SP = space, Method = the message type (i.e. INVITE, ACK, OPTIONS, BYE, CANCEL, REGISTER, SUBSCRIBE, NOTIFY). The Message Header contains one or more header fields, each of which can be spread over multiple lines, but are all terminated by CR LF.

Therefore both the Request and Response message types can be simplified to consist of:

First Line, terminating in CR LF

Header Part, terminating in 2 x CR LF (1 from terminating the last header field + 1 separating the Header and the Body parts)

Message Body.

The SS shall process the first line of the SIP message to determine the method type, and find where the Message Header field ends and then pass this information to the TTCN as 3 charstrings. The method type will define the ASP used.
	Name
	Register

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Invite

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Ack

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Bye

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Options

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Cancel

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Notify

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

	Name
	Subscribe

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Request Line
	charstring
	

	Message Header
	charstring
	This will be analysed/broken up in the TTCN

	Message Body
	charstring
	Optional

The method type is not included in the Response message, therefore only one ASP is defined for this:

	Name
	Response

	Port
	UDPPort

	Parameter Name
	Parameter Type
	Comment

	Status Line
	charstring
	

	Message Header
	charstring
	This will be constructed in the TTCN

	Message Body
	charstring
	Optional

Probably always set this to omit, but include anyway

3.5 Message Header

The Message Header is received in the TTCN as one long charstring. All manipulation of this charstring and the fields it contains will be implemented in the TTCN.
Header fields consist of a header field name followed by a colon (":") and zero or more header field values (usually separated by commas).

Header field values can be folded onto multiple lines if the continuation line begins with a space or horizontal tab. All linear white space, including folding, has the same semantics as SP.
Many existing header fields also include, after the field-value, a semi-colon separated sequence of parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)
Even though an arbitrary number of parameter pairs may be attached to a header field value, any given parameter-name shall not appear more than once.
Certain header fields (with field values separated by commas) can occur more than once, anywhere within the message header. This equates to a single field occurrence with each of the field values appended to the first, separated by a comma, with the order of field values maintained.

3.6 Functions
Several functions, as have found to be required by the first test case, have already been defined and/or implemented in the TTCN:

findField – this function will search through the Message Header to find all instances of the field required. It will return one long charstring which contains all parameters found of this field.

extractAfterSeparator – this function searches through the input string for the separator (e.g. “:” or “=”) specified and any following whitespace, then returns whatever follows this.
extractNumber - this function searches the input string for the first number it finds.

extractEqualsQuotedString - this function should be used for parameters defined as EQUAL quoted-string. It returns the parameter value, without the quotes.

extractParamSeparatedBy - this function will extract the whole parameter value, from the start of the parameter name to the separator (or the end of the string if the separator is not found).

checkStringPresent - this function searches the input string for the specified string and returns true if it is found.
checkRegisterFields_Def – this function performs the message header fields tests required by the test requirements for the first test case, and also included in the requirements for the second test case.

