Page 1

3GPP TSG-RAN5 Meeting #2020-TTCN email
R5s201530
Online, 16th Dec 2019, - 31st Dec 2020
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	38.523-3
	CR
	1420
	rev
	-
	Current version:
	15.9.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to NR5GC testcase 7.1.2.3.5 and 7.1.2.3.5a

	
	

	Source to WG:
	ROHDE & SCHWARZ

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2020-11-10

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-15
(Release 15)
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)

	
	

	Reason for change:
	1. In the current TTCN implementation for 7.1.2.3.5, thereby affecting also for 7.1.2.3.5a, the expectation of sending 1 RLC SDU for 2048 and 64 SDUs for 2048 times seems to be a very inefficient way of transmitting RLC SDUs to the UE.

It is recommended that order is reversed to transmit 1 block of 2048 SDUs (7.1.2.3.5) and 64 blocks of 2048 SDUs to achieve better flow control and reduce time taken to transmit the SDUs

2. As the TC has been modified to embody a outer loop/inner loop concept, it is suggested that after the SDU bearing SN = W-1 is received with Poll Bit = 1, the transistion of UL Scheduler to OnSR (Step 4) and the starting of the watchdog timer for t-PollRetransmit/2 (Step 5) be done within the block so as to avoid going through the loop again and then doing these two steps, thereby, eliminating the need to complete the loop and then performing Steps 4 and Step 5

	
	

	Summary of change:
	1. Reversed the order of parameters for the Outer loop and Inner loop and made consequent changes in the loop structure to receive RLC SDUs.

2. Made changes to accommodate Step 4 and Step 5 within the loop structure

	
	

	Consequences if not approved:
	Testcases may not run stably.

	
	

	Clauses affected:
	7.1.2.3.5.NR5GC, 7.1.2.3.5a.NR5GC

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	

	affected:
	
	x
	 Test specifications
	

	(show related CRs)
	
	x
	 O&M Specifications
	

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Table of Contents
3Table of Contents

1
Corrections required
4
1.1
Correction to function f_TC_7_1_2_3_5_NR_ TestBody ()
4
1.2
Correction to function fl_TC_7_1_2_3_5and5a ()
4

1 Corrections required
1.1 Correction to function f_TC_7_1_2_3_5_NR_ TestBody ()
	Function name
	function f_TC_7_1_2_3_5_NR_TestBody

	Reason for change
	1. In the current TTCN implementation for 7.1.2.3.5, thereby affecting also for 7.1.2.3.5a, the expectation of sending 1 RLC SDU for 2048 and 64 SDUs for 2048 times seems to be a very inefficient way of transmitting RLC SDUs to the UE.

It is recommended that order is reversed to transmit 1 block of 2048 SDUs (7.1.2.3.5) and 64 blocks of 2048 SDUs to achieve better flow control and reduce time taken to transmit the SDUs

2. As the TC has been modified to embody a outer loop/inner loop concept, it is suggested that after the SDU bearing SN = W-1 is received with Poll Bit = 1, the transistion of UL Scheduler to OnSR (Step 4) and the starting of the watchdog timer for t-PollRetransmit/2 (Step 5) be done within the block so as to avoid going through the loop again and then doing these two steps, thereby, eliminating the need to complete the loop and then performing Steps 4 and Step 5

	Summary of change
	1. Reversed the order of parameters for the Outer loop and Inner loop and made consequent changes in the loop structure to receive RLC SDUs.

2. Made changes to accommodate Step 4 and Step 5 within the loop structure

	TTCN module
	Common_NR_TC\7_1_2\RLC_TC_Common_NR.ttcn

	MCC160 Comment
	1. Accepted.
The proposal is in line with the prose !
2. Rejected.
The TTCN is common for 7.1.2.3.5 and 7.1.2.3.5a. The proposed changes will not work for 7.1.2.3.5a as there are 64 blocks instead of one.

Before Change:

	function f_TC_7_1_2_3_5_NR_TestBody(NR_RLC_SS_State_Type p_RLC_Rec,

 DRB_Identity p_NR_DRB_Id) runs on NR_BASE_PTC

 { // AM RLC / 12-bit SN / Correct use of sequence numbering

 fl_TC_7_1_2_3_5and5a(p_RLC_Rec, p_NR_DRB_Id, 2048, 1);

 }

After Change:

	function f_TC_7_1_2_3_5_NR_TestBody(NR_RLC_SS_State_Type p_RLC_Rec,

 DRB_Identity p_NR_DRB_Id) runs on NR_BASE_PTC

 { // AM RLC / 12-bit SN / Correct use of sequence numbering

 fl_TC_7_1_2_3_5and5a(p_RLC_Rec, p_NR_DRB_Id, 1, 2048); //WA#7_1_2_3_5

 }

1.2 Correction to function fl_TC_7_1_2_3_5and5a ()
	Function name
	function f_TC_7_1_2_3_5and5a

	Reason for change
	1. In the current TTCN implementation for 7.1.2.3.5, thereby affecting also for 7.1.2.3.5a, the expectation of sending 1 RLC SDU for 2048 and 64 SDUs for 2048 times seems to be a very inefficient way of transmitting RLC SDUs to the UE.

It is recommended that order is reversed to transmit 1 block of 2048 SDUs (7.1.2.3.5) and 64 blocks of 2048 SDUs to achieve better flow control and reduce time taken to transmit the SDUs

2. As the TC has been modified to embody a outer loop/inner loop concept, it is suggested that after the SDU bearing SN = W-1 is received with Poll Bit = 1, the transistion of UL Scheduler to OnSR (Step 4) and the starting of the watchdog timer for t-PollRetransmit/2 (Step 5) be done within the block so as to avoid going through the loop again and then doing these two steps, thereby, eliminating the need to complete the loop and then performing Steps 4 and Step 5

	Summary of change
	1. Reversed the order of parameters for the Outer loop and Inner loop and made consequent changes in the loop structure to receive RLC SDUs.
2. Made changes to accommodate Step 4 and Step 5 within the loop structure.

	TTCN module
	Common_NR_TC\7_1_2\RLC_TC_Common_NR.ttcn

	MCC160 Comment
	1. Accepted.

The proposal is in line with the prose !

2. Rejected.
The TTCN is common for 7.1.2.3.5 and 7.1.2.3.5a. The proposed changes will not work for 7.1.2.3.5a as there are 64 blocks instead of one.

Before Change:

	function fl_TC_7_1_2_3_5and5a(NR_RLC_SS_State_Type p_RLC_Rec,

 DRB_Identity p_NR_DRB_Id,

 integer p_OuterLoop,

 integer p_InnerLoop) runs on NR_BASE_PTC

 { // @sic R5-203535 sic@
 <<SKIPPED CODE>>
 // @siclog "Step 0" siclog@

 // The SS does not allocate any uplink grant.

 f_NR_ULGrantConfiguration_Stop(nr_Cell1, -, cs_NR_UplinkTimeAlignment_Keep);

 // generate W RLC SDUs in lists of length iteration size

 // p_OuterLoop * p_InnerLoop = W

 for (j := 0; j < p_OuterLoop; j:= j + 1) {

 // generate p_InnerLoop RLC SDUs = PDCP PDUs for transmission

 v_NR_RLC_DataList := fl_NR_GenerateRLC_AM_SDUs(p_RLC_Rec, v_RLC_SDUsize, p_InnerLoop);

 // put those p_InnerLoop AMD PDUs into a list for transmission

 v_Poll := tsc_NR_P_NoPoll; // no indication of Poll bit usage in the prose

 for (i := 0; i < p_InnerLoop; i:= i + 1) {

 v_NR_RLC_AMD_PDU_TX := f_NR_RLC_Get_AMD_FullSDU_TX(p_RLC_Rec, v_Poll, v_NR_RLC_DataList[i]);

 v_DataPerSlotList[i] := cs_NR_DRB_DataPerSlotList_DL_SingleAmdPdu(v_SlotsNumber * 20 * i, -, v_NR_RLC_AMD_PDU_TX);

 }

 v_DataPerSlotArray [j] := v_DataPerSlotList;

 }

 // generate 1 more RLC SDU for transmission

 v_NR_RLC_DataList := fl_NR_GenerateRLC_AM_SDUs(p_RLC_Rec, v_RLC_SDUsize, 1);

 v_NR_RLC_AMD_PDU_TX := f_NR_RLC_Get_AMD_FullSDU_TX(p_RLC_Rec, v_Poll, v_NR_RLC_DataList[0]);

 v_DataPerSlotList[0] := cs_NR_DRB_DataPerSlotList_DL_SingleAmdPdu(v_SlotsNumber * 20 * i, -, v_NR_RLC_AMD_PDU_TX);

 // EXCEPTION: The SS is configured for step 1 500 ms in advance. The transmissions are performed every second radio frame.

 // Step 2 is started 100 ms after the first DL AMD PDU has been transmitted in step 1.

 v_TimingDL := f_NR_GetNextSendOccasion_DL(nr_Cell1, 500);

 v_TimingUL := f_NR_GetNextSendOccasion_ULafterDL(nr_Cell1, v_TimingDL, 100);

 // @siclog "Step 2" siclog@

 // In the following steps the SS transmits 1 UL grant in every second radio frame to enable the UE to return each received AMD PDU in one looped back AMD PDU.

 // Step 2 executed before step 1 to ensure the UL grant is configured in time

 f_NR_ULGrantConfiguration_StartPeriodicGrant(nr_Cell1, cs_TimingInfo_NR(v_TimingUL), v_NR_ResourceAllocation, 20);

 // EXCEPTION: Step 1 shall be repeated from j=0 to j=FLOOR((Maximum_RLC_SN/iteration size).

 // @siclog "Step 1" siclog@

 // The SS transmits several RLC PDUs in a RLC PDU List, the number of RLC PDUs sent is defined by the iteration_size.

 // Each RLC Data PDU contains one RLC SDU. The SS transmits an AMD PDU containing a SDU to the UE.

 for (j := 0; j < p_OuterLoop; j:= j + 1) {

 v_DataPerSlotList := v_DataPerSlotArray [j];

 v_TimingDL := f_SubFrameTiming_AddMilliSeconds(v_TimingDL, 20*p_InnerLoop);

 DRB.send (cas_NR_DRB_COMMON_REQ_DataPerSlot(nr_Cell1,

 p_NR_DRB_Id,

 cs_TimingInfo_NR(v_TimingDL),

 v_DataPerSlotArray [j]));

 }

 // @siclog "Step 1A" siclog@

 // The SS transmits one RLC PDU in the slot following the transmissions of step 1.

 v_TimingDL := f_SubFrameTiming_AddMilliSeconds(v_TimingDL, 20*p_InnerLoop);

 DRB.send (cas_NR_DRB_COMMON_REQ_DataPerSlot(nr_Cell1,

 p_NR_DRB_Id,

 cs_TimingInfo_NR(v_TimingDL),

 v_DataPerSlotList));

 // EXCEPTION: Step 2A shall be repeated from j=0 to j=FLOOR((Maximum_RLC_SN/iteration size).

 // EXCEPTION: In Step 2A, SS shall receive a RLC PDU and step 2A is repeated from SN=j*iteration_size to SN=(((j+1)*iteration_ size)-1).

 // @siclog "Step 2A" siclog@

 // The SS transmits one RLC PDU in the slot following the transmissions of step 1.

 for (j := 0; j < p_OuterLoop; j:= j + 1) {

 v_DataPerSlotListRx := v_DataPerSlotArray [j];

 for (i := 0; i < p_InnerLoop; i:= i + 1) {

 if (p_RLC_Rec.AM_SN_Size == 18) {

 v_NR_RLC_AMD_Data := v_DataPerSlotListRx[i].PduSduList.RlcPdu[i].AMD.SN18Bit.Data;

 } else {

 v_NR_RLC_AMD_Data := v_DataPerSlotListRx[i].PduSduList.RlcPdu[i].AMD.SN12Bit.Data;

 }

 if ((j == p_OuterLoop) and (i == p_InnerLoop)) {// SN = W-1

 // @siclog "Step 3" siclog@

 // Check: Does the UE transmit the Wth AMD PDU with the Poll bit set and with the contents of the SDU?.

 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_AMD_Data, tsc_NR_P_Poll);

 f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 3");

 } else {// SN < W-1

 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_AMD_Data, tsc_NR_P_NoPoll);

 }
 if ((((j*p_OuterLoop) + (i+1)) mod v_VerdictFilter) == 0) {f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 2A" & " SN = " & int2str(((j*p_OuterLoop) + i)))};

 }

 }

 // @siclog "Step 4" siclog@

 // The SS starts the UL default grant transmission.

 f_NR_ULGrantConfiguration_Start(nr_Cell1);

 // @siclog "Step 5" siclog@

 // Check: Does the UE transmit an AMD PDU within t-PollRetransmit/2?

 t_WatchDog.start(p_RLC_Rec.t_PollRetransmit/2.0);

 alt {

 [] DRB.receive (car_NR_DRB_COMMON_IND_RLC_PDUList(nr_Cell1, p_NR_DRB_Id))

 {

 f_NR_SetVerdictFailOrInconc(__FILE__, __LINE__, "Step 5");

 }

 [] t_WatchDog.timeout

 {}

 }

 // @siclog "Step 6" siclog@

 // The SS transmits a STATUS PDU to acknowledge the W uplink AMD PDUs with SN=0 to SN=W-1. ACK_SN = W.

 f_NR_TxSTATUS_PDU(p_RLC_Rec, p_NR_DRB_Id);

 // @siclog "Step 7" siclog@

 // Check: Does the UE transmit the (w+1)st AMD PDU with the Poll bit set and with the contents of the SDU?

 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_DataList[0], tsc_NR_P_Poll);

 f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 7");
 <<SKIPPED CODE>>

After Change:

	function fl_TC_7_1_2_3_5and5a(NR_RLC_SS_State_Type p_RLC_Rec,

 DRB_Identity p_NR_DRB_Id,

 integer p_OuterLoop,

 integer p_InnerLoop) runs on NR_BASE_PTC

 { // @sic R5-203535 sic@
 <<SKIPPED CODE>>
 // @siclog "Step 0" siclog@

 // The SS does not allocate any uplink grant.

 f_NR_ULGrantConfiguration_Stop(nr_Cell1, -, cs_NR_UplinkTimeAlignment_Keep);

 // generate W RLC SDUs in lists of length iteration size

 // p_OuterLoop * p_InnerLoop = W

 for (j := 0; j < p_OuterLoop; j:= j + 1) {

 // generate p_InnerLoop RLC SDUs = PDCP PDUs for transmission

 v_NR_RLC_DataList := fl_NR_GenerateRLC_AM_SDUs(p_RLC_Rec, v_RLC_SDUsize, p_InnerLoop + 2); //WA#7_1_2_3_5
 // put those p_InnerLoop AMD PDUs into a list for transmission

 v_Poll := tsc_NR_P_NoPoll; // no indication of Poll bit usage in the prose

 for (i := 0; i < (p_InnerLoop + 1); i:= i + 1) { //WA#7_1_2_3_5
 v_NR_RLC_AMD_PDU_TX := f_NR_RLC_Get_AMD_FullSDU_TX(p_RLC_Rec, v_Poll, v_NR_RLC_DataList[i]);

 v_DataPerSlotList[i] := cs_NR_DRB_DataPerSlotList_DL_SingleAmdPdu(v_SlotsNumber * 20 * i, -, v_NR_RLC_AMD_PDU_TX);

 }

 v_DataPerSlotArray [j] := v_DataPerSlotList;

 }

 /* WA#7_1_2_3_5 REMOVED generate 1 more RLC SDU for transmission
 v_NR_RLC_DataList := fl_NR_GenerateRLC_AM_SDUs(p_RLC_Rec, v_RLC_SDUsize, 1);

 v_NR_RLC_AMD_PDU_TX := f_NR_RLC_Get_AMD_FullSDU_TX(p_RLC_Rec, v_Poll, v_NR_RLC_DataList[0]);

 v_DataPerSlotList[0] := cs_NR_DRB_DataPerSlotList_DL_SingleAmdPdu(v_SlotsNumber * 20 * i, -, v_NR_RLC_AMD_PDU_TX);*/
 // EXCEPTION: The SS is configured for step 1 500 ms in advance. The transmissions are performed every second radio frame.

 // Step 2 is started 100 ms after the first DL AMD PDU has been transmitted in step 1.

 v_TimingDL := f_NR_GetNextSendOccasion_DL(nr_Cell1, 500);

 v_TimingUL := f_NR_GetNextSendOccasion_ULafterDL(nr_Cell1, v_TimingDL, 100);

 // @siclog "Step 2" siclog@

 // In the following steps the SS transmits 1 UL grant in every second radio frame to enable the UE to return each received AMD PDU in one looped back AMD PDU.

 // Step 2 executed before step 1 to ensure the UL grant is configured in time

 f_NR_ULGrantConfiguration_StartPeriodicGrant(nr_Cell1, cs_TimingInfo_NR(v_TimingUL), v_NR_ResourceAllocation, 20);

 // EXCEPTION: Step 1 shall be repeated from j=0 to j=FLOOR((Maximum_RLC_SN/iteration size).

 // @siclog "Step 1" siclog@

 // The SS transmits several RLC PDUs in a RLC PDU List, the number of RLC PDUs sent is defined by the iteration_size.

 // Each RLC Data PDU contains one RLC SDU. The SS transmits an AMD PDU containing a SDU to the UE.

 for (j := 0; j < p_OuterLoop; j:= j + 1) {

 //WA#7_1_2_3_5 REMOVED v_DataPerSlotList := v_DataPerSlotArray [j];
 DRB.send (cas_NR_DRB_COMMON_REQ_DataPerSlot(nr_Cell1,

 p_NR_DRB_Id,

 cs_TimingInfo_NR(v_TimingDL),

 v_DataPerSlotArray [j]));

 //WA#7_1_2_3_5

 if (p_RLC_Rec.AM_SN_Size == 18) {

v_TimingDL := f_SubFrameTiming_AddMilliSeconds(v_TimingDL, 20*p_InnerLoop);

 }
 }
 /* WA#7_1_2_3_5 REMOVED @siclog "Step 1A" siclog@

 // The SS transmits one RLC PDU in the slot following the transmissions of step 1.

 if (p_RLC_Rec.AM_SN_Size == 12) {

v_TimingDL := f_SubFrameTiming_AddMilliSeconds(v_TimingDL, 20*p_InnerLoop);

 }

 DRB.send (cas_NR_DRB_COMMON_REQ_DataPerSlot(nr_Cell1,

 p_NR_DRB_Id,

 cs_TimingInfo_NR(v_TimingDL),

 v_DataPerSlotList));*/
 // EXCEPTION: Step 2A shall be repeated from j=0 to j=FLOOR((Maximum_RLC_SN/iteration size).

 // EXCEPTION: In Step 2A, SS shall receive a RLC PDU and step 2A is repeated from SN=j*iteration_size to SN=(((j+1)*iteration_ size)-1).

 // @siclog "Step 2A" siclog@

 // The SS transmits one RLC PDU in the slot following the transmissions of step 1.

 for (j := 0; j < p_OuterLoop ; j:= j + 1) {

 v_DataPerSlotListRx := v_DataPerSlotArray [j];

 for (i := 0; i < p_InnerLoop; i:= i + 1) {

 if (p_RLC_Rec.AM_SN_Size == 18) {

 v_NR_RLC_AMD_Data :=
v_DataPerSlotListRx[i].PduSduList.RlcPdu[0].AMD.SN18Bit.Data;

 } else {

 v_NR_RLC_AMD_Data := v_DataPerSlotListRx[i].PduSduList.RlcPdu[0].AMD.SN12Bit.Data;

 }

 //WA#7_1_2_3_5
 if ((j == (p_OuterLoop - 1)) and (i == (p_InnerLoop - 1))) {// SN = W-1

 // @siclog "Step 3" siclog@

 // Check: Does the UE transmit the Wth AMD PDU with the Poll bit set and with the contents of the SDU?.

 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_AMD_Data, tsc_NR_P_Poll);

 f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 3");
 //WA#7_1_2_3_5 MOVED HERE
 //@siclog "Step 4" siclog@

 // The SS starts the UL default grant transmission.

 f_NR_ULGrantConfiguration_Start(nr_Cell1);

 // @siclog "Step 5" siclog@

 // Check: Does the UE transmit an AMD PDU within t-PollRetransmit/2?

 t_WatchDog.start(p_RLC_Rec.t_PollRetransmit/2.0);

 alt {

 [] DRB.receive (car_NR_DRB_COMMON_IND_RLC_PDUList(nr_Cell1, p_NR_DRB_Id))

 {

 f_NR_SetVerdictFailOrInconc(__FILE__, __LINE__, "Step 5");

 }

 [] t_WatchDog.timeout

 {}

 }
 // @siclog "Step 6" siclog@

 // The SS transmits a STATUS PDU to acknowledge the W uplink AMD PDUs with SN=0 to SN=W-1. ACK_SN = W
 f_NR_TxSTATUS_PDU(p_RLC_Rec, p_NR_DRB_Id);
 // @siclog "Step 6" siclog@

 // The SS transmits a STATUS PDU to acknowledge the W uplink AMD PDUs with SN=0 to SN=W-1. ACK_SN = W.

 f_NR_TxSTATUS_PDU(p_RLC_Rec, p_NR_DRB_Id);
 } else {// SN < W-1

 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_AMD_Data, tsc_NR_P_NoPoll);

 }

 if ((((j*p_OuterLoop) + (i+1)) mod v_VerdictFilter) == 0) {f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 2A" & " SN = " & int2str(((j*p_OuterLoop) + i)))};

 }

 }

 // @siclog "Step 7" siclog@

 // Check: Does the UE transmit the (w+1)st AMD PDU with the Poll bit set and with the contents of the SDU?
 //WA#7_1_2_3_5
 f_NR_RxAMD_SDU (p_RLC_Rec, p_NR_DRB_Id, v_NR_RLC_DataList[i], tsc_NR_P_Poll);

 f_NR_PreliminaryPass(__FILE__, __LINE__, "Step 7");
 <<SKIPPED CODE>>

