
3GPP TSG-RAN WG5 Testing
R5s180289
1 Jan 2017 – 31 Dec 2017

	CR-Form-v11.2

	CHANGE REQUEST

	

	
	36.523-3
	CR
	4159
	rev
	-
	Current version:
	14.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction for TBS selection test cases 7.1.7.1.x

	
	

	Source to WG:
	Keysight Technologies UK

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2018-04-26

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	In these test cases while generating a downlink PDCP PDU, in function f_GetN_OctetsFromPRBS() we are appending one octet at a time from tsc_RandomPRBS to v_Noctets. For higher category UEs the octet string length (p_N) will be very large. It has been observed (dependent on PC speed and TTCN-3 compiler implementation) that this loop implementation can cause the total test case time to exceed the currently configured guard timer.

	
	

	Summary of change:
	A more efficient implementation of f_GetN_OctetsFromPRBS() is proposed to reduce the number of concatenations by appending larger segments of tsc_RandomPRBS (up to the full length of 2047 bytes) in order to reduce the overall test case execution time.

	
	

	Consequences if not approved:
	These test cases may fail due to guard timer expiry

	
	

	Clauses affected:
	7.1.7.1.x

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR … CR …

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Change 1
	Function name
	f_GetN_OctetsFromPRBS

	Reason for change
	In these test cases while generating a downlink PDCP PDU, in function f_GetN_OctetsFromPRBS() we are appending one octet at a time from tsc_RandomPRBS to v_Noctets. For higher category UEs the octet string length (p_N) will be very large. It has been observed (dependent on PC speed and TTCN-3 compiler implementation) that this loop implementation can cause the total test case time to exceed the currently configured guard timer.

	Summary of change
	A more efficient implementation of f_GetN_OctetsFromPRBS() is proposed to reduce the number of concatenations by appending larger segments of tsc_RandomPRBS (up to the full length of 2047 bytes) in order to reduce the overall test case execution time.

	TTCN module
	CommonDefs.ttcn

	MCC160 Comment
	Accepted as improvement with simplified implementation (see below)

Before change
function f_GetN_OctetsFromPRBS(UInt_Type p_Start,

 UInt_Type p_N)

 return octetstring

 {

 var integer i;

 var integer k;

 var octetstring v_Noctets :=''O; // output string to be extracted from random test pattern

 for (i:= 0; i< p_N; i := i+1) {

 k := p_Start + i;

 k := k mod 2047;

 v_Noctets := v_Noctets & tsc_RandomPRBS[k];

 }

 return v_Noctets;
 }
After change
 function f_GetN_OctetsFromPRBS(UInt_Type p_Start,

 UInt_Type p_N)

 return octetstring

 {

 const integer tsc_RandomPRBSlength:=lengthof(tsc_RandomPRBS); // length is 2047 with the current value

 var integer i,copied,noFullStrings;

 var integer k;

 var octetstring v_Noctets :=''O; // output string to be extracted from random test pattern

 var integer possibleSubstringLength;

 possibleSubstringLength:=tsc_RandomPRBSlength-p_Start; // maximal length that can be copied in first step

 if (p_N<possibleSubstringLength) { // result can be determined in one step

 v_Noctets:=substr(tsc_RandomPRBS,p_Start,p_N);

 }

 else { // result determined in multiple steps

 copied:=tsc_RandomPRBSlength-p_Start;

 v_Noctets:=substr(tsc_RandomPRBS,p_Start,copied); // same as first step above

 p_N:=p_N-copied;

 noFullStrings:=p_N/tsc_RandomPRBSlength; // no of total buffer to copy

 for (i:=0;i<noFullStrings;i:=i+1) {

 v_Noctets:=v_Noctets & substr(tsc_RandomPRBS,0,tsc_RandomPRBSlength); // copy complete buffer

 p_N:=p_N-tsc_RandomPRBSlength;

 }

 if (p_N>0) {

 v_Noctets:=v_Noctets & substr(tsc_RandomPRBS,0,p_N); // copy remaining octets

 }

 }

 return v_Noctets;
 }

MCC160 Implementation
	 function f_GetN_OctetsFromPRBS(UInt_Type p_Start,

 UInt_Type p_N)

 return octetstring

 {

 var integer v_LengthOfPRBS := lengthof(tsc_RandomPRBS);

 var integer v_Start := p_Start mod v_LengthOfPRBS;
 var octetstring v_Noctets := substr(tsc_RandomPRBS, v_Start, v_LengthOfPRBS - v_Start);

 while (lengthof(v_Noctets) < p_N) {

 v_Noctets := v_Noctets & tsc_RandomPRBS;

 }

 v_Noctets := substr(v_Noctets, 0, p_N);

 return v_Noctets;

 }

