

[bookmark: _Toc225185236]3GPP TSG-RAN5 Meeting #100	R5-234302
Toulouse, France, 21st – 25th August 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	34.229-3
	CR
	0927
	rev
	-
	Current version:
	17.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Routine maintenance for TS 34.229-3

	
	

	Source to WG:
	MCC TF160

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2023-07-31

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	1. Editorial issues

	
	

	Summary of change:
	1. Editorial corrections

	
	

	Consequences if not approved:
	Inconsistent test specification

	
	

	Clauses affected:
	7.3.3.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

<Start of modification>
[bookmark: _Toc508883363][bookmark: _Toc35971599][bookmark: _Toc58314703][bookmark: _Toc138930865]7.3.3.1	Differences between BNF - TTCN-3 Type Mapping
In normal cases the mapping is straight forward. Below you find the exceptions, including potential examples.
-	The root message type is not a SIP-message but directly a Request or Response type which is represented as a TTCN-3 record. All Method - Message names (INVITE, BYE, ACK etc.) and all message header field names (To, From, CallID, Cseq, Via etc.) are mapped to an enumerated type in TTCN-3 to simplify the extension of new headers. During encoding, the long-form of these message header fields is always used. The respective field in the header type is restricted to values which are allowed.
	BNF rules of RFC
	TTCN-3 Type Mapping

	SIP-message =		Request / Response
	type record REGISTER_Request {…},
type record INVITE_Request {…},
type record PRACK_Request {…},
type record NOTIFY_Request {…},
type record UPDATE_Request {…},
…
type record Response {…}

	Method =				INVITEm
						/ ACKm
						/ OPTIONSm
						/ BYEm
						/ CANCELm
						/ REGISTERm
						/ …
	type enumerated Method { ACK_E, BYE_E, CANCEL_E, INVITE_E, OPTIONS_E, REGISTER_E, …}

-	The structure of the message header fields are mapped to a "set " type in TTCN-3, because the order of these header fields is not mandatory. There is an Unknown Header List given in the type system to decode unknown headers with ID and Value.
	Message-header =	(
						…
						/ Contact
						/ Content-Disposition
						…
						/ Via
						/ Warning
						/ WWW-Authenticate
						/ extension-header) CRLF
	type set MessageHeader {
	…
	Contact contact optional,
	ContentDisposition contentDisposition optional,
	…
	Via via,
	Warning warning optional,
	WwwAuthenticate wwwAuthenticate optional,
	UndefinedHeader_List undefinedHeader_List optional
}

-	The various parameter lists defined in the BNF are mapped and combined into three different TTCN-3 sets of generic-param types. These types differ only in their name: SemicolonParam_List, AmpersandParam_List, CommaParam_List to distinguish between the relevant separators.
	Uri-parameters =		*(";" uri-parameter)
	type set of GenericParam SemicolonParam_List;

	Authentication-Info =	"Authentication-Info" HCOLON ainfo
						*(COMMA ainfo)
	type record AuthenticationInfo {
	FieldName fieldName(AUTHENTICATION_INFO_E),
	CommaParam_List ainfo
}

	ainfo =					nextnonce
						/ message-qop
						/ response-auth
						/ cnonce
						/ nonce-count
	type set of GenericParam CommaParam_List;

	Headers =				"?" header *("&" header)
	type set of GenericParam AmpersandParam_List;

-	Any more specific parameter rule (e.g. uri-param, user-param, lr-param , digest-cln, etc.) is simplified to the generic-param rule which will be mapped as a record structure of two charstrings (ID and paramValue). This is equivalent to a token with an optional generic value (token [EQUAL gen-value]).
	Digest-cln =			realm
						/ domain
						/ nonce
						/ opaque
						/ stale
						/ algorithm
						/ qop-options
						/ auth-param
	type record GenericParam {
	charstring id ,
	charstring paramValue optional
}

-	In addition to the pure charstring as a base type, the TTCN-3 type system provides base integer types which are unrestricted to the model e.g. the portField, Cseq number, maxForward digit.
	User =					1*(unreserved
								/ escaped / user-unreserved
)
telephone-subscriber as defined in RFC 2806
	charstring

	password =			*(unreserved
							/ escaped
							/"&"
							/ "="
							/ "+"
							/ "$"
							/ ","
)
	charstring

	Port =					1*DIGIT
	integer

	Status-Code =		Informational
						/ Redirection
						/ Success
						/ Client-Error
						/ Server-Error
						/ Global-Failure
						/ extension-code
	integer

-	Where the same header type can appear multiple times within a message, they will be decoded as a single header field, with multiple list elements. The order of appearance of the headers will be preserved within the header list value.
	Contact =				("Contact" / "m") HCOLON
			 		(STAR / (contact-param
								*(COMMA contact-param)
)
)
	type record Contact {
	FieldName fieldName(CONTACT_E),
	ContactBody contactBody
}

	

contact-param =		(name-addr / addr-spec)
						*(SEMI contact-params)
	type record ContactAddress {
	Addr_Union addressField,
	SemicolonParam_List contactParams optional
}

type union ContactBody {
	charstring wildcard,
	ContactAddress_List contactAddresses
}

Used in

type set of ContactAddress ContactAddress_List;

-	The BNF (clause 7.3.1 Header Field Format RFC 3261 [16]) specifies that several WWW or Proxy Authentication/Authorization headers should not be combined into a single header; however they will be decoded into such in the codec. If these need to be sent downlink then a new, 'raw' (pure charstring) message type will be introduced.
	Authorization =		"Authorization" HCOLON credentials
	type record Authorization {
 FieldName fieldName(AUTHORIZATION_E),
 Credentials body
}

	Credentials =			("Digest" LWS digest-response)
						/ other-response
	type union Credentials {
CommaParam_List digestResponse,
OtherAuth otherResponse
}

-	The different schemes (sip, sips, tel, fax, absoluteUri) in the SIP URI are all handled via the same type definition. The union “UriComponents” can be enhanced to support further specific URI formats. Nevertheless it is possible to use the “other” branch of “UriComponents” for any other URI format in which case the charstring shall contain the URI without the scheme and the first “:”.
	Request-URI =		SIP-URI
						/ SIPS-URI
						/ absoluteURI

with

SIP-URI =			"sip:"
		 	[userinfo]
						hostport
						uri-parameters
						[headers]

and

SIPS-URI =			"sips:"
						[userinfo]
						hostport
						uri-parameters
						[headers]

and

absoluteURI =		scheme ":" (hier-part / opaque-part)
	type record SipUriComponents {
 // sip-uri acc. To RFC 3261 [16] cl. 19.1
 UserInfo		userInfo optional,
 HostPort		hostPort
}

type record TelUriComponents {
 // tel-uri acc. To RFC 3966 [38]
 charstring	subscriber
}

type record UrnUriComponents {
 // urn-uri acc. To RFC 2141 [39]
 charstring	namespaceId,		// e.g. "service"
 charstring	namespaceSpecificString	// e.g. "sos"
}

type union UriComponents {
 SipUriComponents	sip,		// scheme: "sip" or sips"
 TelUriComponents	tel,		// scheme: "tel"
 UrnUriComponents	urn,	// scheme: "urn"
 charstring			other
}

type record SipUrl
{
 charstring			scheme,
 UriComponents		components,
 SemicolonParam_List		urlParameters optional,
 AmpersandParam_List		headers optional
}type record SipUrl {
	charstring scheme,
	UserInfo userInfo optional,
	HostPort hostPort,
	SemicolonParam_List urlParameters optional,
	AmpersandParam_List headers optional
}

-	Universal charstrings shall be supported by the codec especially for the Display name in the URI.
-	For downlink messages the len field in the ContentLength header is always set to 0 by TTCN; in case of the SIP message containing a message body SS shall replace the value by the actual length of the encoded message body (see clause 7.3.4).
-	According to the SIP type definitions there are many ‘charstring’ fields being optional in records;
 in UL the decoder shall map missing information by setting the respective field to omit rather than by assigning an empty string (“”).
-	type union Addr_Union
As in 'NameAddr' the field 'displayName' is optional in the first place the two branches of 'Addr_Union' are equivalent when there is no 'displayName'; nevertheless in UL the decoder shall use the branch ‘nameAddr’ if – and only if – the address information is surrounded by ‘<’ and ‘>’ (what is needed at least when there is a display name followed by the address information)
-	Ipv6 address in URI
When an Ipv6 address is used as hostname in a SIP URI it is typically surrounded by ‘[‘ and ‘]’ what is matter of the codec: in DL the codec shall add ‘[‘ and ‘]’ when needed, in UL the ‘[‘ and ‘]’ shall be removed i.e. in the ‘host’ field of the SipUriComponents’ hostPort there shall be no ‘[‘ or ‘]’ at the beginning or at the end.
<End of modification>

3GPP
