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<Start of modified section 1>
G.3	Statistical testing of NR sidelink CBR measurement tests
G.3.1	General
The CBR measurement tests are of statistical nature. The pass fail limits in tests of statistical nature are expressed as a limit (e.g. delay limit) and a success ratio applicable for the limit. The success ratio is 98% (the complement is the error ratio ER = 2%).
G.3.2	Design of the test
The test is defined by the following design principles (see TS 36.521-1 clause G.7X, Theory):
1) The early decision concept is applied.
2) A second limit is introduced: bad DUT factor M>1
To decide the test pass:
· Supplier risk is applied based on the bad DUT quality
To decide the test fails
· Customer risk is applied based on the specified DUT quality
The test is defined by the following parameters:
1) Limit ER = 0.02 (success ratio = 98%)
2) Bad DUT factor M=1.5 (selectivity)
3) Confidence level CL = 95% (for specified DUT and bad DUT-quality)
G.3.3	Numerical definition of the pass fail limits
Table G.3.3-1: pass fail limits for ER = 0.02
	ne
	nsp
	nsf
	ne
	nsp
	nsf
	ne
	nsp
	nsf
	ne
	nsp
	nsf

	0
	206
	N/A
	43
	1970
	1389
	86
	6370
	3300
	129
	6413
	5409

	1
	287
	N/A
	44
	2005
	1431
	87
	6371
	3348
	130
	6414
	5459

	2
	345
	N/A
	45
	2041
	1468
	88
	6372
	3396
	131
	6415
	5511

	3
	398
	10
	46
	2078
	1511
	89
	6373
	3443
	132
	6416
	5560

	4
	447
	23
	47
	2113
	1555
	90
	6374
	3492
	133
	6417
	5613

	5
	494
	39
	48
	2149
	1600
	91
	6375
	3537
	134
	6418
	5660

	6
	540
	57
	49
	6333
	1637
	92
	6376
	3585
	135
	6419
	5712

	7
	585
	78
	50
	6334
	1683
	93
	6377
	3631
	136
	6420
	5765

	8
	629
	102
	51
	6335
	1728
	94
	6378
	3683
	137
	6421
	5811

	9
	671
	130
	52
	6336
	1768
	95
	6379
	3728
	138
	6422
	5866

	10
	714
	155
	53
	6337
	1813
	96
	6380
	3778
	139
	6423
	5915

	11
	756
	182
	54
	6338
	1857
	97
	6381
	3828
	140
	6424
	5970

	12
	797
	212
	55
	6339
	1900
	98
	6382
	3874
	141
	6425
	6020

	13
	838
	243
	56
	6340
	1938
	99
	6383
	3922
	142
	6426
	6069

	14
	879
	276
	57
	6341
	1982
	100
	6384
	3971
	143
	6427
	6124

	15
	918
	306
	58
	6342
	2028
	101
	6385
	4018
	144
	N/A
	6427

	16
	959
	342
	59
	6343
	2072
	102
	6386
	4070
	145
	
	

	17
	998
	375
	60
	6344
	2116
	103
	6387
	4118
	146
	
	

	18
	1037
	408
	61
	6345
	2161
	104
	6388
	4169
	147
	
	

	19
	1077
	442
	62
	6346
	2203
	105
	6389
	4216
	148
	
	

	20
	1115
	480
	63
	6347
	2246
	106
	6390
	4264
	149
	
	

	21
	1154
	517
	64
	6348
	2292
	107
	6391
	4314
	150
	
	

	22
	1192
	553
	65
	6349
	2338
	108
	6392
	4358
	151
	
	

	23
	1230
	591
	66
	6350
	2382
	109
	6393
	4413
	152
	
	

	24
	1269
	629
	67
	6351
	2427
	110
	6394
	4462
	153
	
	

	25
	1306
	666
	68
	6352
	2473
	111
	6395
	4506
	154
	
	

	26
	1344
	706
	69
	6353
	2516
	112
	6396
	4561
	155
	
	

	27
	1382
	741
	70
	6354
	2559
	113
	6397
	4611
	156
	
	

	28
	1420
	777
	71
	6355
	2608
	114
	6398
	4661
	157
	
	

	29
	1457
	815
	72
	6356
	2652
	115
	6399
	4712
	158
	
	

	30
	1494
	855
	73
	6357
	2694
	116
	6400
	4760
	159
	
	

	31
	1531
	898
	74
	6358
	2741
	117
	6401
	4807
	160
	
	

	32
	1568
	936
	75
	6359
	2789
	118
	6402
	4854
	161
	
	

	33
	1605
	976
	76
	6360
	2836
	119
	6403
	4909
	162
	
	

	34
	1642
	1015
	77
	6361
	2883
	120
	6404
	4960
	163
	
	

	35
	1679
	1059
	78
	6362
	2928
	121
	6405
	5010
	164
	
	

	36
	1715
	1098
	79
	6363
	2971
	122
	6406
	5062
	165
	
	

	37
	1752
	1138
	80
	6364
	3018
	123
	6407
	5110
	166
	
	

	38
	1788
	1180
	81
	6365
	3068
	124
	6408
	5158
	167
	
	

	39
	1825
	1220
	82
	6366
	3115
	125
	6409
	5204
	168
	
	

	40
	1861
	1263
	83
	6367
	3162
	126
	6410
	5256
	169
	
	

	41
	1897
	1302
	84
	6368
	3203
	127
	6411
	5305
	
	
	

	42
	1933
	1344
	85
	6369
	3251
	128
	6412
	5358
	
	
	


FFS
The first column is the number of errors (ne = number of exceeded delays or number of wrong reports)
The second column is the number of samples for the pass limit (nsp , ns=Number of samples= number of successes + number of wrong reports)
The third column is the number of samples for the fail limit (nsf)
G.3.4	Pass fail decision rules
The pass/fail decision rules apply for a single test, comprising one component in the test vector. The over all pass/fail conditions are defined in clause G.2.6:
Having observed 0 error, pass the test at 206+ samples, otherwise continue,
Having observed 1 error, pass the test at 287+ samples, otherwise continue,
Having observed 2 errors, pass the test at 345+ samples, otherwise continue,
Having observed 3 errors, pass the test at 398+ samples, fail the test at 10- samples, otherwise continue,
…
Having observed 143 errors, pass the test at 6427+ samples, fail the test at 6124- samples, otherwise continue,
Having observed 144 errors, fail the test at 6427- samples,
Where x+ means: x or more, x- means x or less.
NOTE 1: an ideal DUT passes after 206 samples. The maximum test time is 6427 samples.
FFS
G.X4	Theory to derive the numbers in Table G.2.3-1 (informative)
TS 36.521-1 Annex G.X 4 applies.
G.5	Theory to derive the numbers in Table G.3.3-1 (informative)
TS 36.521-1 Annex G.7 applies except that:
-	36.521-1 Annex G.7.9 is replaced by G.5.1 and G.5.2.
G.5.1	Algorithm to calculate pass and fail probabilities
Following basic assumptions are introduced for statistical testing are assumed in this clause:
· Result of single iteration of test procedure loop obeys Bernoulli distribution with error ratio , i.e. the probability that the TE observes expected UE behaviour in single iteration (counted as a success) is  and the probability that the TE doesn't observe expected UE behaviour in single iteration (counted as a fail) is .
· Results of different iterations are independent and identically distributed (i.i.d).
· Early decision concept is applied, i.e., the TE repeats multiple iterations of the test procedure loop. For each iteration the TE records its result (count as a success if the TE observes the expected behavior, count as a fail otherwise) and its index in all iterations. When the i-th fail is observed in -th iteration, the TE compares  with corresponding pass limit  and fail limit . The TE shall:
-	terminate the test and decide the DUT passes the test if 
-	terminate the test and decide the DUT fails the test if , 
-	continue the test and make no decision if .
For a more intuitive understanding, we use the state transition diagram shown in Figure G.5.1-1 to describe the entire process of statistical testing. In Figure 1, X-axis and Y-axis denote the success count and fail count in iterations already executed respectively. And the point with coordinate  (referred as state  thereafter) is used to indicates that the DUT has executed  iterations which includes  successes and  fails, where .
[image: ]
Figure G.5.1-1: Visualization of early decision statistical testing process. In this example, the TE verdicts that the DUT passes the test after executing 15 iterations of test procedure loop. The results of these 15 iterations are “s”, “f”, “f”, “s”, “s”, “s”, “f”, “s”, “s”, “s”, “f”, “s”, “s” and “s” in order (“s” = “success” and “f” = “fail”).
From Figure G.5.1-1 it’s straightforward to get following observations:
· The DUT is always in state  at the beginning of statistical test since no iteration is executed at that moment.
· Assume the DUT is in state  after executing  iterations. Then,
-	if the -th iteration counts a success (with probability ), the success count shall increase 1 and fail count shall remain unchanged after the -th iteration. As a result, the DUT will be in state  after the -th iteration. We call that the DUT moves from state  to state , depicted as moving right by one in the diagram. 
-	if the -th iteration counts a fail (with probability ), the success count remains unchanged and the fail count increases 1 after the -th iteration. Then the DUT will be in state  after the -th iteration. We call that the DUT moves from state  to state , depicted as moving up by one in the diagram.
· The TE shall evaluate whether pass criteria or fail criteria is satisfied every time the DUT has executed a new iteration, i.e. the DUT moves to a new state. Specifically speaking,
-	If pass criterion is satisfied when DUT is in state , the TE makes the decision that the DUT passes the test. Correspondingly, state  is referred as a passing state (depicted as green points in Figure G.5.1-1);
-	If fail criterion is satisfied when DUT is in state , the TE makes the decision that the DUT fails the test. Correspondingly, state  is referred as a failure state (depicted as red points in Figure G.5.1-1).
-	If neither pass criterion nor fail criterion is satisfied when DUT is in state , the TE makes no decision and continues the test. Correspondingly, state  is referred as a non-decidable state (depicted as hollow points in Figure G.5.1-1).
In this way, the statistical testing is represented as a process in which the DUT starts from state , moves along certain path in the diagram, and finally stops in certain passing state or failure state.
Obviously, there must be a close relationship between the pass/fail states and the pass/fail limits used for the test. The following two conclusions precisely describes the mapping between pass/fail limits and pass/fail states.
Conclusion 1: The DUT is decided to pass the test if and only if the DUT moves from state  to a state belongs to passing state set .
Proof: We prove sufficiency first, and then necessity.
· Sufficiency: If the DUT is in state , it means that the DUT has executed  iterations which includes  success and  fails. Clearly, the TE can only get the i+1-th fail as early as the -th iteration, then we have . This is just the pass criterion when the TE collecting the i+1-th fail.
· Necessity: If the TE verdicts the DUT to pass when it collects the i+1-th fail, following inequations must have been satisfied according to the pass criterion:

The DUT is in state  when the i-th fail happens in the -th iteration. Then the next  iterations after the -th iteration must be counted as success since . Then the DUT will be in state  after executing these  iterations.
Conclusion 2: The DUT is decided to fail the test if and only if the DUT moves from state  to a state belongs to failure set , where  for sake of simplify.
Proof of conclusion 2 is quite similar as the proof of conclusion 1 and is omitted here. Conclusion 1 and 2 have shown the equivalence between pass/fail limits and pass/fail state sets. As a result, the probability that the DUT pass the test for given error ratio , passing state set  and failure state set , denoted as , is given by

Furthermore, it’s easy to prove that any path from  to passing state  won’t pass through any passing state or failure state except the ending state. This is because if the path contains a passing state or failure state  which is not the ending state, the test will be terminated immediately when the DUT is in state . Then  shall be the ending state, i.e. . This contradicts the assumption that state  is not the ending state. This also means that two events “DUT moves from state  to passing state ” and “DUT moves from state  to passing state ” are disjoint if . Then we have,

where  is defined as the transition probability from state  to state , i.e. 

Similarly, the probability that the DUT fail the test for given error ratio , passing state set  and failure state set , denoted as , is derived as

From the discussion above we can observe that the calculation of the  and  is finally transformed into the calculation of the transition probability . Assuming DUT is in state  after the -th iteration, . Considering that the -th iteration can only have two possible results: success or fail, we can derive that the DUT can only be in state  or state  after executing  iterations. Then we have:

The first equation above holds because the event “DUT moves from state  to state , passing state ” and event “DUT moves from state  to state , passing state ” are disjoint. And the second equation above holds because results of different iterations are independent. 
Furthermore, we have following obvious observations:
If , obviously the event “DUT moves from state  to state ” won’t happen since state  doesn’t exist in this case. Otherwise, the probability that this event occurs equals to   according to the definition of transition probability. Then we have

Similarly, we can also derive that

Where,  and  are indicator functions, 

If , the event “DUT moves from state  to state ” won’t happen since the test will be terminated when DUT reaches state . Otherwise, this event is equivalent to the event “result of the -th iteration is a success”. Then we have

Similarly, we can also derive that

where,

Finally, we have shown that following conclusion holds.
Conclusion 3: Transition probability  can be calculated by

The conclusion above shows that  can be calculated in a dynamic programming manner: Clearly, we can calculate  using the above equation if we know the value of  and ; For the same reason, we can calculate  and  using the equation above if we know the value of  ,  and ; Repeating the recursion above, at last all we need to know is only . And we know  since UE always is in state  when test starts. 
Using the recursion above, we can finally obtain  and further  and  for given ,  and .
Assume the limit-risk mapping given in 36.521-1 is still used. Then the customer risk  and supplier risk  for given passing state set  and failure state set  is the probability that baseline bad DUT (error ratio = , where  is the bad DUT factor) passes the test and the probability that baseline good DUT (error ratio = , where  is the bad DUT factor) fails the test respectively. Then we have

G.5.2	Method of designing pass/fail limit to approach given risk probability
For given error ratio , confidence level , good DUT factor  and bad DUT factor , pass limit  and fail limit  can be obtained by using the method listed below. Note that the limit-risk mapping in 36.521-1 is assumed.
Step 1: Initialize as follows:
· Set  and , passing state set and failure state set respectively, as .
· Set  and , customer risk and supplier risk respectively, as ;
· Set , number of executed iterations, as ;
· Set , non-decidable state set after -th iteration, as ;
· Set  and , transition probability to state  for baseline good DUT and for baseline bad DUT respectively, as , .
· Select  and , step size for customer risk and supplier risk respectively, as , .
[image: ]
Figure G.5.2-1: Demonstration of step 1
Figure G.5.2-1 is the demonstration of step 1. The reason to initialize , ,  is because the DUT is always in state  before executing any iteration. And we have  since no passing state or failure state is selected yet.
Step 2: Calculate set , the set of the state can be reached after the n+1-th iteration, as . Then for all state , calculate  and  as follows:


[image: ]
Figure G.5.2-2: Demonstration of step 2
See Figure G.5.2-2 for better understanding of step 2. If DUT doesn’t pass or fail the test after the n-th iteration then DUT must be in one state in . It’s easy to observe that the DUT must be in one state in . Then the transition probability to state in  can be calculated by using Conclusion 3. For example, the only way to move to state  in Figure 2 is to first move to state  then count a fail in the n+1-th iteration, then we have . On the other hand, to move to state the DUT can first move to state  then count a success in the n+1-th iteration or first move to state  then count a fail in the n+1-the iteration, i.e. 
Step 3: First, try finding an integer  which satisfies ,  and . If such a  exists, let


If such a  doesn’t exist, instead try finding integers  and  which satisfy



Then, 
· if such a  exists, set

· if such a  exists, set 

Two possible cases in step 3 are depicted in figure G.5.2-3 and figure G.5.2-4 respectively. If  exists, even we add all states  with  to  and all states  with  to , the customer risk and supplier risk are still no larger than  (the increment of the customer risk and supplier risk, are denoted as blue and green triangle in figure 4 respectively).
[image: ]
Figure G.5.2-3: Demonstration of step 3 ( exists).
If  doesn’t exist, instead we try to find state set  which satisfies that the total transition probability to any state in the set is approximately . If such a set exists we can add states in this set to  without breaking customer risk threshold. Similarly, we can also try to a state set which satisfies that the total transition probability to any state in the set is approximately  and add states in this set to .
[image: ]
Figure G.5.2-4: Demonstration of step 3 ( doesn’t exist).
Step 4: Let , . Then go back to Step 2 if , otherwise go to Step 5.
If a state  is selected as a passing state or failing state then it’s no longer a non-decidable state. Then we need to exclude it from non-decidable state set after n+1-the iteration. If all states in  are excluded, clearly the test surely will terminate after the n+1-the iteration and the designing is finished. Otherwise, we need to go back to step 2 and repeat procedures above.
Step 5: Sort all states  in  in the ascending order of  and all states  in  in the ascending order of , i.e. we denote

Then construct passing state set  and failure state set  as 

Where 
Purpose of step 5 is to further optimize the passing state and failure state obtained in step 2 to 4. To understand step 5, we only need to note that all path to passing state  must also pass state . On the other hand, if a path passes state  or , it must eventually reach one passing state in ,  and . Then one can derive that 

In other words, if  is a passing set which satisfies customer risk requirements, then  is also a passing set satisfying customer risk requirements since it has exactly the same customer risk as . But  is a better choice than  since it requires fewer iterations to make decision.
For the same reason, we can also derive that failure set  has same supplier risk with  but requires fewer iterations to fail the test.
[image: ]
Figure G.5.2-5: Demonstration of step 3 ( doesn’t exist).

Step 6: Construct pass limit  and fail limit  as follows:


At last, we can convert pass/fail state sets to pass/fail limits by using conclusion 3 in Annex G.5.1.
<End of modified section 1>
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