Page 1

3GPP TSG-RAN5 Meeting #33
(
R5-063066

Riga, Latvia, 6th – 10th Nov 2006

	CR-Form-v9.2

	CHANGE REQUEST

	

	(

	34.229-3
	CR
	-
	(

rev
	-
	(

Current version:
	1.2.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	x
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Draft 34.229-3, v1.3.0

	
	

	Source to WG:
(

	MCC160

	Source to TSG:
(

	R5

	
	

	Work item code:
(

	IMS-CCR_Test
	
	Date: (

	26/10/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	The latest versions of ASPs, TSOs and PIXITs used in the TTCN have been introduced. The codec specification is incomplete.

	
	

	Summary of change:
(

	The document has been updated with the latest ASPs, TSOs and PIXITs used in the TTCN and the codec specification has been completed.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	Introduction, 1, 2, 6.2.1, 6.2.6, 6.2.7, 7.1.4, 8, 9.3, Annex B

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	The document is for information.

Introduction

The present document is 3rd part of a multi-part conformance test specification for UE and is valid for 3GPP Release 5. The specification contains a TTCN design frame work and the detailed test specifications in TTCN for the UE conformance at the Gm reference point.

3GPP TS 34.229-1 [5] contains a conformance test description in prose for UE at the Uu interface.

3GPP TS 34.229-2 [6] contains a pro-forma for the UE Implementation Conformance Statement (ICS).

3GPP TS 34.229-3 the current document.
1
Scope

The present document specifies the protocol conformance testing in TTCN for the 3GPP User Equipment (UE) at the Gm interface.

The present document is the 3rd part of a multi-part test specification, 3GPP TS 34.229. The following TTCN test specification and design considerations can be found in the present document:

· the overall test suite structure;

· the testing architecture;

· the test methods and PCO definitions;

· the test configurations;

· the design principles, assumptions, and used interfaces to the TTCN tester (System Simulator);

· TTCN styles and conventions;

· the partial PIXIT proforma;

· the TTCNfiles for the mentioned protocols tests.

The Abstract Test Suites designed in the document are based on the test cases specified in prose (3GPP TS 34.229‑1 [5]).

The present document is valid for UE implemented according 3GPP Release 5.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

-
For a Release 5 UE, references to 3GPP documents are to version 5.x.y, when available.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 34.123-1: "User Equipment (UE) conformance specification; Part 1: Protocol conformance specification".

[3]
3GPP TS 34.123-2: "User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".

[4]
3GPP TS 34.123-3: "User Equipment (UE) conformance specification; Part 3: Abstract Test Suites (ATS)".
[5]
3GPP TS 34.229-1: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification ".

[6]
3GPP TS 34.229-2: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".

[7]
3GPP TS 34.108: "Common test environments for User Equipment (UE) conformance testing".

[8]
ISO/IEC 9646-1: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[9]
ISO/IEC 9646-7: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 7: Implementation Conformance Statements".

[10]
ETSI ETS 300 406 (1995): "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

[11]
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3".

[12]
ETSI ES 201 873: “Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3”.
6
Test method and test model
6.1
Test method

6.2
IMS CC test model
The test model is shown in figure 3.
6.2.1
Ports interfacing to SS

In TTCN-3, ports are defined in all test components and in the Test System Interface. This is the equivalent of PCOs in TTCN-2. These ports then have to be mapped, or connected, to the SS at the start of each test.

6.2.1.1
Data ports

IMS_CC ATS in TTCN-3 simulates the SIP behaviour at the P_CSCF side. The scripts of SIP signalling in TTCN-3 communicate with the UE under test through four data ports and the emulations beneath. Each port shall be able to distinguish the use of one of the dual protocol stacks of IPv4 / IPv6.
The type of port (client or server) used to send or received a message will depend on the transport protocol selected for the testing, i.e UDP or TCP.

· UDP case: The SS will send requests and responses to the UE from its client port. The SS will receive requests and responses from the UE on its server port.
· TCP case: The SS will receive requests from the UE and will send responses to those requests on its server port. The SS will send requests to the UE and will receive responses to those requests on its client port.

For requests originated in the UE, the transport protocol is selected by the UE. This information is extracted in the TTCN-3 and used in subsequent responses sent by the SS.

For requests originating in the SS, the UDP transport protocol is used.
If no security associations have been set up, the unprotected client and server ports will be used. The security ports shall be used by the TTCN-3 authors when a security association has been established.
6.2.1.2
Security Associations Setup
Four unidirectional SAs are established between the UE and the SS:

SA1: port_uc to port_ps
SA2: port_pc to port_us
SA3: port_ps to port_uc
SA4: port_us to port_pc

The first pair (SA1 and SA3) is for bidirectional traffic between port_uc and port_ps. The second pair (SA2 and SA4) is for bidirectional traffic between port_pc and port_us.

While TCP scenario will use all four SAs, in UDP, only two SAs are needed because there is no traffic from port_ps to port_uc nor from port_us to port_pc. Figure x shows one example of the use of ports and security association in UDP and TCP.
[image: image1.wmf]Unprotected client port

Unprotected server port

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_us

port_pc

port_uc

port_ps

SA1

spi_ps

SA2

spi_us

SA2

spi_us

SA1

spi_ps

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

UDP case

TCP case

Unprotected client port

Unprotected server port

Unprotected client port

Unprotected client port

Unprotected server port

Unprotected server port

Unprotected client port

Unprotected server port

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_us

port_pc

port_uc

port_ps

SA1

spi_ps

SA2

spi_us

SA2

spi_us

SA1

spi_ps

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

UDP case

TCP case

Unprotected client port

Unprotected server port

Unprotected client port

Unprotected client port

Unprotected server port

Unprotected server port

Figure x Use of port and SA in UDP and TCP6.2.1.3
Control ports

IMS_CC ATS also controls the SS configuration and passes necessary parameters to the various emulation entities in the SS. This is done by ASPs through an IP-CAN control port and an IP configuration port.

From the protocol stack point of view, SIP is an application layer protocol located above transport layer UDP which in turn uses the services provided by the IP/IPsec layer. The IP packages are transmitted via the connected IP-CAN bearer, the UTRAN bearer or the GERAN bearer. The emulations of these protocol layers in the SS shall be compliant with the relevant core specifications (3GPP and IETF).
The IP-CAN bearers are created, configured modified and released though the ASP at the IP-CAN control port. The TTCN-3 codes shall also be able to control the UDP/IP/IPsec configurations and provide necessary parameters through the control ASPs.

[image: image2.wmf]UDP / TCP

IPv4/v6/IPsec

SAD

IF0

IF1

IF2

…

NAS

RRC

PDCP

RLC

RLC

MAC

PHY

GMM

SNDCP

LLC

GRR

RR

L2

RLC/MAC

L1

IP

-

CAN

Control port

IP

Config

port

DNS

server

port

DHCP

server

port

MMI

UE

(SUT)

UTRAN

GERAN

RF cable to UE

SIP

client

port

SIP

server

port

SIP

Secure

client port

SIP

Secure

server port

IMS_CC MTC

(TTCN

-

3 codes)

..

..

..

..

..

..

..

..

..

..

Other IP

-

CAN

SigComp

Control port

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

DNS/DHCP codec

DNS

-

Srv

PTC

(TTCN

-

3 codes)

DHCP

-

Srv

PTC

(TTCN

-

3 codes)

MMI

port

UDP / TCP

IPv4/v6/IPsec

SAD

IF0

IF1

IF2

…

NAS

RRC

PDCP

RLC

RLC

MAC

PHY

GMM

SNDCP

LLC

GRR

RR

L2

RLC/MAC

L1

IP

-

CAN

Control port

IP

Config

port

DNS

server

port

DHCP

server

port

MMI

UE

(SUT)

UTRAN

GERAN

RF cable to UE

SIP

client

port

SIP

server

port

SIP

Secure

client port

SIP

Secure

server port

IMS_CC MTC

(TTCN

-

3 codes)

..

..

..

..

..

..

..

..

..

..

..

Other IP

-

CAN

SigComp

Control port

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

DNS/DHCP codec

DNS

-

Srv

PTC

(TTCN

-

3 codes)

DHCP

-

Srv

PTC

(TTCN

-

3 codes)

MMI

port

Figure 3 IMS CC test model

6.2.2
SAD

Security Association Database (SAD) shall be made accessible by the IPsec entity and contain sets of parameters corresponding to each security association. During registration/authentication, the UE and the SS will negotiate these parameters for setting up a security association. As the negotiation is carried out on SIP level (through SIP message exchanges), the resulting security parameters are obtained and stored in IMS_CC ATS. A number of ASPs are defined to convey these parameters from TTCN-3 codes to SAD. ASPs manipulating the SAD are also defined.

6.2.3
Network interface

Similar to the majority of TCP/IP stack implementations, a network interface (IF0, IF1, IF2, ...) structure is used to connect the IP-CAN bearer to IP protocol entity. When the ASP for setting up an IP-CAN bearer is called via the IP-CAN control port, the SS shall connect the established radio access bearer to the relevant IF structure, in order to provide the radio bearer connectivity to the IP/IPsec layer.
6.2.4
SigComp and related control port

SIP Compression is mandatory (subclause 8 of TS 24.229) and Signalling compression (RFC3320, RFC3485, RFC 3486) protocol is used for SIP compression. The SigComp entity in the model is used to carry out the compression/decompression functions. In the receiving direction of the SS, the SigComp entity will detect whether the incoming SIP message is compressed and, if so, decompress it. In the sending direction of the SS, the TTCN controls whether the outgoing SIP message is compressed through the SigComp control port.
6.2.5
SIP TTCN 3 Codec

SIP is a text-based protocol, the messages exchanged between the UE and the SS are character strings. In TTCN-3 ATS the messages are structured to take the advantage of TTCN-3 functionality, and to make the debugging and maintenance of the ATS easier. When the TTCN-3 ATS sends a message to the UE, the SIP TTCN-3 codec converts the structured message to the corresponding character string then transfers it to the UE. When the SS receives a message from the UE, the TTCN-3 codec converts the received character string to the structured message and passes it to the TTCN-3 ATS.

6.2.6
DHCP and DNS data ports

The DHCP port is used for receiving the DHCP requests from the UE under test, and sending corresponding responses to the UE. The DNS port is used for receiving domain name resolution requests from the UE and sending the results back to the UE. The TTCN which implements the required DHCP and DNS server functions (only the functions necessary for testing purposes, not full functionality) will receive and send on these ports.
The DHCP and DNS server functionalities in the default test configuration are implemented as Parallel Test Components (PTCs). For P-CSCF Discovery test cases (TS 34.229-1 clause 7), the PTCs are disabled and the DHCP and DNS ports are connected to the Main Test Component (MTC) so that the test script running on the MTC has full control of DHCP and DNS signalling.
6.2.7
MMI port

In order to support test automation and regression testing, an MMI port has been defined through which MMI commands (e.g. “Please initiate a call”) are sent to an external entity. Implementations can customize the external entity according to their needs.
This port is enabled by setting PIXIT parameter px_TestAutomation to ‘true’.
6.3
Upper Tester (UT)

6.4
TTCN-3
TTCN is used as specification language. ETSI ES 201 873[12] (TTCN-3) is applied to the notation.
7
ASP definitions
7.1
Control ASP

ASPs for configuring/controlling the SS are defined to operate in a pair of ASPs, Req (request) ASP and Cnf (Confirm) ASP of the blocking mode. The TTCN-3 execution after sending a Req ASP shall wait (be blocked) for the Cnf ASP.
Because the IMS Test Suite is radio access technology independent, few parameters are passed from the TTCN-3. Therefore the exact configuration procedures used are determined by the implementation.

The PIXIT px_RANTech (see below) is set by the operator and is passed through the TTCN to the SS. This is defined as an enumerated type and is used to specify which platform the test is to be run on (e.g. GERAN or UTRAN).

7.1.1
Cell Control

	Name
	CreateCellReq

	Port
	IPCANctl

	Comment
	ASP type for creating a cell

	Parameter Name
	Parameter Type
	Comment

	ranTech
	RANTech
	

	Name
	CreateCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of CreateCellReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ReleaseCellReq

	Port
	IPCANctl

	Comment
	ASP type for releasing resources allocated to the cell

	Parameter Name
	Parameter Type
	Comment

	Name
	ReleaseCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseCellReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	RANTech

	Type
	enumerated

	Parameters
	GERAN, UTRAN_FDD, UTRAN_TDD, dummy1, dummy2

	Comment
	Indicates the radio access network technology used for transport of SIP signalling messages over the air interface

	Name
	Status

	Type
	enumerated

	Parameters
	success, failure, inconclusive

	Comment
	Indicates the status result of the requesting ASP

7.1.2
IdleUpdated

	Name
	IdleUpdatedReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS to bring the UE into an idle updated state and both GMM and MM registered

	Parameter Name
	Parameter Type
	Comment

	Name
	IdleUpdatedCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of IdleUpdatedReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

7.1.3 PDPContext

	Name
	ActivatePDPContextRequest_Req

	Port
	IPCANctl

	Comment
	ASP type which sets up a radio connection and waits for the Activate PDP Context Request and sends the Radio Bearer Setup message (if required). The ProtocolConfigurationOptions IE received in the ActivatePDPContextRequest is sent back in the Cnf.

ActivatePDPContextAccept_Req must be called after this to complete the procedure

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ActivatePDPContextRequest_Cnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivatePDPContextRequest_Req. The contents of the ProtocolConfigurationOptions IE received in the ActivatePDPContextRequest are included here

	Parameter Name
	Parameter Type
	Comment

	configOptList
	ConfigOptList
	

	status
	Status
	

	Name
	ActivatePDPContextAccept_Req

	Port
	IPCANctl

	Comment
	ASP type which sends the Activate PDP Context Accept message with the ProtocolConfigurationOptions IE specified.

ActivatePDPContextRequest_Req and Cnf must be called before this

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	configOptList
	ConfigOptList
	

	Name
	ActivatePDPContextAccept_Cnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivatePDPContextAccept_Req.

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ActivateSecondaryPDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request a secondary PDP context. Includes the bearer info to be configured for this secondary PDP context

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ActivateSecondaryPDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivateSecondaryPDPContextReq, when it is completed

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ModifyPDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request to modifiy an existing PDP context. Includes the bearer info for this to be modified to

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ModifyPDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ModifyPDPContextReq, when it is completed

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DeactivatePDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS deactivate the indicated PDP context. A value of pdpContextId = 0 indicates that all existing PDP contexts are to be deactivated.

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	Name
	DeactivatePDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of DeactivatePDPContextReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	BearerInfo

	Type
	integer

	Comment
	References the RAB to be configured. This is RAN independent and can be added to/reduced as required

This is simply a list of RAB identifiers. It is expected, in the future, for these identifiers to equate to specific RAB requirements, for all available radio access technologies. For example :

	BearerInfo
	RANTech = UTRAN_FDD
	RANTech = GERAN

	1
	34.108, clause 6.10.2.4.59
	51.010, clause a.a.a

	2
	34.108, clause 6.10.2.4.60
	51.010, clause b.b.b

	3
	34.108, clause 6.10.z.z.z
	51.010, clause c.c.c

	Name
	ConfigOptList

	Type
	set of ConfigOpt

	Comment
	Used to contain the protocol configuration options IE used in the PDP context messages

	Name
	ConfigOpt

	Type
	octetstring

	Parameter Name
	Parameter Type

	ContainerId
	octetstring [2]

	ContainerLength
	octetstring [1]

	ContainerContents
	octetstring optional

7.1.4 IP Configuration

	Name
	InstallKeyReq

	Port
	IPconf

	Comment
	ASP type which installs the keys into the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	MD5_96Key
	bitstring
	length (128)

	SHA_1_96Key
	bitstring
	length (160)

	DES_EDE3_CBCKey
	bitstring
	length (192)

	AES_CBCKey
	bitstring
	length (128)

	Name
	InstallKeyCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of InstallKeyReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	AssignIPaddrReq

	Port
	IPconf

	Comment
	ASP type which assigns the IP address to the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	p_cscf_Addr
	IPAddr
	

	dhcp_Addr
	IPAddr
	

	dns_Addr
	IPAddr
	

	ue_Addr
	IPAddr
	

	peerUE_Addr
	IPAddr
	

	Name
	AssignIPaddrCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of AssignIPaddrReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	IPAddr

	Type
	charstring

	Comment
	in either colon separated or dotted decimal format

	Name
	ReleaseIPConfigurationReq

	Port
	IPconf

	Comment
	ASP type which releases the IMS IP layer configurations including Security Associations. This ASP is meant to be used when starting a new test case to make sure that the IP layer is in a well defined initial state irrespective of the execution of previous tests.

	Parameter Name
	Parameter Type
	Comment

	-
	-
	No parameters

	Name
	ReleaseIPConfigurationCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of ReleaseIPConfigurationReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	AddPCSCFaddrReq

	Port
	IPconf

	Comment
	ASP type which configures a new address of the P-CSCF component in the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	p_cscf_Addr
	IPAddr
	New IP address of P-CSCF component to be simulated

	Name
	AddPCSCFaddrCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of AddPCSCFaddrReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	SignallingCompressionReq

	Port
	SigComp

	Comment
	ASP type which starts/stops signalling compression of messages

	Parameter Name
	Parameter Type
	Comment

	startCompression
	boolean
	

	Name
	SignallingCompressionCnf

	Port
	SigComp

	Comment
	ASP type which returns the result of the execution of SignallingCompressionReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

7.1.5 SA Database

	Name
	SingleAddSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of SingleAddSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DoubleAddSADReq

	Port
	IPconf

	Comment
	ASP type which sets two entries of SAD in the SS

	Parameter Name
	Parameter Type
	Comment

	sa1
	SA
	

	sa2
	SA
	

	Name
	DoubleAddSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DoubleAddSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DelSADReq

	Port
	IPconf

	Comment
	ASP type which deletes the SAD entries

	Parameter Name
	Parameter Type
	Comment

	spi1
	SPI
	

	spi2
	SPI
	optional

	spi3
	SPI
	optional

	spi4
	SPI
	optional

	spi5
	SPI
	optional

	spi6
	SPI
	optional

	spi7
	SPI
	optional

	spi8
	SPI
	optional

	spi9
	SPI
	optional

	Name
	DelSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DelSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	SA

	Port
	IPconf

	Comment
	ASP type which sets a single entry of parameters for a security association in the SS

	Parameter Name
	Parameter Type

	spi
	SPI

	srcIPaddr
	IPAddr

	desIPaddr
	IPAddr

	srcUDPport
	integer

	desUDPport
	integer

	intAlgo
	IntAlgo

	ciphAlgo
	CiphAlgo

	Name
	IntAlgo

	Type
	enumerated

	Parameters
	hmac_md5_96, hmac_sha_1_96

	Comment
	Integrity algorithms

	Name
	CiphAlgo

	Type
	enumerated

	Parameters
	des_ede3_cbc, aes_cbc, nociph

	Comment
	Ciphering algorithms, "nociph" means no ciphering

	Name
	SPI

	Type
	integer (0..4294967295)

	Comment
	security parameter index for IPsec

7.1.6 Emergency CS Call

	Name
	ExpectEmergencyCSCall

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request an emergency CS call

	Parameter Name
	Parameter Type
	Comment

	Name
	EmergencyCSCallActive

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ExpectEmergencyCSCall when it is in call active state

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ReleaseCSCallReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS to release the CS call previously established during ExpectEmergencyCSCall

	Parameter Name
	Parameter Type
	Comment

	Name
	ReleaseCSCallCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseCSCallReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

7.2
IMS-CC Ports and ASP definitions
7.3
Ut PCO and ASP definitions

·
·
·
·
·

·
·

·
·

	

	

	
	

	

	

	
	

	
	

	

	

	
	

	
	

	
	

	
	

·
·
·
·
·

·
·
·

8

Codec definition

8.1.
Introduction

SIP is a text-based protocol, thus the message exchange between the UE and the SS are pure character strings. In the TTCN-3 ATS the messages are structured and optimized to take the advantage of TTCN-3 functionality, and to make the debugging and maintenance of the ATS easier.

Every time the TTCN-3 ATS sends a message to the UE, the SIP TTCN-3 codec converts (encodes) the structured message given as a template to the corresponding character string before transferred to the UE.

When the SS receives a message from the UE, the TTCN-3 codec converts (decodes) the received character string to the structured message value and passes it to the TTCN-3 ATS.

8.2.
TCI Interface Specification

TTCN-3 provides a reference test system implementation architecture in [ETSI ES 201 873-6] which is used here.
8.2.1
TCI - Required and Provided Interface Methods

A codec implementation for this ATS has to adhere to the TCI-CD provided and TCI-CD required interfaces as defined in [ETSI ES 201 873-6/7.3.2]. Within this context we recommend to use the TCI value interface [ETSI ES 201 873-6/7.2.2] with its several methods. In addition the codec has to follow the type mappings and instruction as defined in section 8.3

8.3.

Requirements on abstract message syntax
8.3.1
Type definition - Syntax / Semantic aspects
All given defined BNF grammars (e.g. the ABNF of RFC 3261) are unique. Thus the syntax tree for each syntactically correct message derived with these grammars are unique too and the parts of a message can be uniquely identified (represented) by the terminal phrase belonging to a non terminal symbol and its derivation path in the syntax tree.

The syntax tree of all given messages can be used to uniquely identify and describe the parts of the messages. The leaves are the part of every message and the nodes from the root to the leaves represent the sequence of rules to be applied to derive that part

The IMS/SIP root message type is an ordered structured type, which is represented as a record type in TTCN-3. For each grammar rule of the ABNF a TTCN-3 record type is declared with the specific name of the rule. The following rules are applied to the fields within a record:

· A non-terminal symbol is declared as a record type for this symbol

· The order of the symbols in the rule are represented by an equal order of the fields

· Repetitions are declared as ‘set of’ or ‘record of’ types

· Options are represented as optional record/set fields

· Alternatives are declared as union types

8.3.2 Deviations of the type definition semantic

· Most of the ‘literals’ of a message (for example: the string "Via" or "v" in the message header fields) are not represented.

· The TTCN-3 charstring type is used where we stop structuring even if the ABNF uses structured types. More details found in section 8.3.3.
· Wherever possible parts are mapped to their best type representation, e.g., DIGIT based rules are mapped to integer type not to a charstring type
· All of the following delimiters (including preceding or following whitespace) defined by the ABNF grammar to separate the parts of a message are not represented (see Note).

STAR = SWS "*" SWS ; asterisk

SLASH = SWS "/" SWS ; slash

EQUAL = SWS "=" SWS ; equal

LPAREN = SWS "(" SWS ; left parenthesis

RPAREN = SWS ")" SWS ; right parenthesis

RAQUOT = ">" SWS ; right angle quote

LAQUOT = SWS "<"; left angle quote

COMMA = SWS "," SWS ; comma

SEMI = SWS ";" SWS ; semicolon

COLON = SWS ":" SWS ; colon

LDQUOT = SWS DQUOTE; open double quotation mark

RDQUOT = DQUOTE SWS ; close double quotation mark

HCOLON = *(SP / HTAB) ":" SWS
SP = single space

HTAB = tab

SWS = sep whitespace
Note: If they are present within a pure charstring they will be handled like a normal character and are still included.
· Messages which are not of interest to the test suite are left undecoded as a charstring and will not be further structured.

8.3.3 Additional requirements for codec implementations (SIP/IMS Message

The SIP/IMS codec is based on a normalized encoding which is always produced by an encoder. Decoder implementations, however, have to handle normalization before, or when constructing the structured message value, e.g., long versus compact form, whitespace compression, delimiter removal, same header grouping, etc. All these aspects will be handled in the next section.
Differences between BNF – TTCN-3 Type Mapping

In normal cases the mapping is straight forward. Below you find the exceptions, including potential examples.
· The root message type is not a SIP-message but directly a Request or Response type which is represented as a TTCN-3 record. All Method – Message names (INVITE, BYE, ACK etc.) and all message header field names (To, From, CallID, CSeq, Via etc.) are mapped to an enumerated type in TTCN-3 to simplify the extension of new headers. During encoding, the long-form of these message header fields is always used. The respective field in the header type is restricted to values which are allowed.
	BNF rules of RFC

	TTCN-3 Type Mapping

	SIP-message =

Request / Response
	type record REGISTER_Request {…},

type record INVITE_Request {…},

type record PRACK_Request {…},

type record NOTIFY_Request {…},

type record UPDATE_Request {…},

…
type record Response {…}

	Method =

INVITEm

/ ACKm

/ OPTIONSm

/ BYEm

/ CANCELm

/ REGISTERm

/ …
	type enumerated Method { ACK_E, BYE_E, CANCEL_E, INVITE_E, OPTIONS_E, REGISTER_E, …}

· The structure of the message header fields are mapped to a “set ” type in TTCN-3, because the order of these header fields is not mandatory. There is an Unknown Header List given in the type system to decode unknown headers with ID and Value.
	message-header =
(

 …

/ Contact

/ Content-Disposition

…

/ Via

/ Warning

/ WWW-Authenticate

/ extension-header) CRLF
	type set MessageHeader {

…

Contact contact optional,

ContentDisposition contentDisposition optional,

…

Via via,

Warning warning optional,

WwwAuthenticate wwwAuthenticate optional,

UndefinedHeader_List undefinedHeader_List optional
}

	
	

· The various parameter lists defined in the BNF are mapped and combined into three different TTCN-3 sets of generic-param types. These types differ only in their name: SemicolonParam_List, AmpersandParam_List, CommaParam_List to distinguish between the relevant separators.

	uri-parameters =

*(";" uri-parameter)
	type set of GenericParam SemicolonParam_List;

	Authentication-Info =
"Authentication-Info" HCOLON ainfo

*(COMMA ainfo)
	type record AuthenticationInfo {

FieldName fieldName(AUTHENTICATION_INFO_E),

CommaParam_List ainfo

}

	ainfo =

nextnonce

/ message-qop

/ response-auth

/ cnonce

/ nonce-count
	type set of GenericParam CommaParam_List;

	Headers =

"?" header *("&" header)
	type set of GenericParam AmpersandParam_List;

· Any more specific parameter rule (e.g. uri-param, user-param, lr-param , digest-cln etc.) is simplified to the generic-param rule which will be mapped as a record structure of two charstrings (ID and paramValue). This is equivalent to a token with an optional generic value (token [EQUAL gen-value]).

	digest-cln =

realm

/ domain

/ nonce

/ opaque

/ stale

/ algorithm

/ qop-options

/ auth-param
	type record GenericParam {

charstring id ,

charstring paramValue optional

}

· In addition to the pure charstring as a base type, the TTCN-3 type system provides base integer types which are unrestricted to the model e.g. the portField, CSeq number, maxForward digit.

	user =

1*(unreserved

/ escaped / user-unreserved

)
telephone-subscriber as defined in RC 2806
	charstring

	password =

*(unreserved

/ escaped

/"&"

/ "="

/ "+"

/ "$"

/ ","

)
	charstring

	Port =

1*DIGIT
	integer

	Status-Code =

Informational

/ Redirection

/ Success

/ Client-Error

/ Server-Error

/ Global-Failure

/ extension-code
	integer

· Where the same header type can appear multiple times within a message, they will be decoded as a single header field, with multiple list elements. The order of appearance of the headers will be preserved within the header list value.

	Contact =

("Contact" / "m") HCOLON

(STAR / (contact-param

*(COMMA contact-param)

)

)
	type record Contact {

FieldName fieldName(CONTACT_E),

ContactBody contactBody

}

	contact-param =

(name-addr / addr-spec)

*(SEMI contact-params)
	type record ContactAddress {

Addr_Union addressField,

SemicolonParam_List contactParams optional

}

type union ContactBody {

charstring wildcard,

ContactAddress_List contactAddresses

}
Used in

type set of ContactAddress ContactAddress_List;

· The BNF [Ref. 7.3.1 Header Field Format RFC 3261] specifies that several WWW or Proxy Authentication/Authorization headers should not be combined into a single header; however they will be decoded into such in the codec. If these need to be sent downlink then a new, 'raw' (pure charstring) message type will be introduced
	Authorization =

"Authorization" HCOLON credentials
	type record Authorization {

 FieldName fieldName(AUTHORIZATION_E),

 Credentials body

}

	Credentials =

("Digest" LWS digest-response)

/ other-response
	type union Credentials {

CommaParam_List digestResponse,

OtherAuth otherResponse

}

· The different schemes (sip, sips, tel, fax, absoluteUri) in the SIP URI are all handled via the same type definition to simplify the decoding. This is because there is no difference between the URIs except the scheme

	Request-URI =

SIP-URI

/ SIPS-URI

/ absoluteURI
with

SIP-URI =

“sip:”

[userinfo]

hostport

uri-parameters

[headers]

and

SIPS-URI =

“sips:"

[userinfo]

hostport

uri-parameters

[headers]
and

absoluteURI =

scheme ":" (hier-part / opaque-part)
	type record SipUrl {

charstring scheme,

UserInfo userInfo optional,

HostPort hostPort,

SemicolonParam_List urlParameters optional,

AmpersandParam_List headers optional

}

· Universal charstrings should be supported by the codec especially for the Display name in the URI.

8.3.4 Additional requirements for codec implementations (SDP Body)

The Session Description Protocol is defined in RFC 4566.

· The 'type' fields (such as 'v' and 'o' are not represented).

· For the defined attributes, the att-field is also not represented (e.g. 'curr' is not represented in SDP_attribute_curr).

· The Messages which are not of interest to a test suite are left undecoded as a charstring and will not be further structured.

Differences between BNF – SDP Type Mapping

In normal cases the mapping is straight forward. Below are the exceptions which differ.

· The numerical fields in the origin-field, the time-field and the timezone field have been defined as charstring because they may not fit into a 32-bit signed integer.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	origin = username

 sess-id

 sess-version

 nettype

 addrtype

 unicast-address
	type record SDP_Origin {

 charstring username,

 charstring session_id,

 charstring session_version,

 charstring net_type,

 charstring addr_type,

 charstring addr

}

	time-fields = start-time

 stop-time

 repeat-fields

 [zone-adjustments]

	type record SDP_time_field {

 charstring start_time,

 charstring stop_time

}

	zone-adjustments = time

 typed-time

	type record SDP_timezone {

 charstring adjustment_time,

 SDP_typed_time offset

}

· The zone-adjustments field in the time-fields has been included as an additional field in the top-level message definition.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	session-description = proto-version

 origin-field

 session-name-field

 information-field

 uri-field

 email-fields

 phone-fields

 connection-field

 bandwitdh-fields

 time-fields

 key-fields

 attribute-fields

 media-descriptions

	type record SDP_Message {

 integer protocol_version,

 SDP_Origin origin,

 charstring session_name,

 charstring information optional,

 charstring uri optional,

 SDP_email_list emails optional,

 SDP_phone_list phone_numbers optional,

 SDP_connection connection optional,

 SDP_bandwidth_list bandwidth optional,

 SDP_time_list times,

 SDP_timezone_list timezone_adjustments optional,

 SDP_key key optional,

 SDP_attribute_list attributes optional,

 SDP_media_desc_list media_list optional

	time-fields = start-time

 stop-time

 repeat-fields

 [zone-adjustments]

	type record SDP_time {

 SDP_time_field time_field,

 SDP_repeat_list time_repeat optional

}

· The mappings for the email-address, phone-number and connection-address fields have been simplified.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	email-address = address-and-comment

 / dispname-and-address

 / addrspec

	type record SDP_contact {

 charstring addr_or_phone,

 charstring disp_name optional

}

	phone-number = email-safe

 / email-safe "<" phone ">"

 / phone

	type record SDP_contact {

 charstring addr_or_phone,

 charstring disp_name optional

}

	connection-address = multicast-address

 / unicast-address

	type record SDP_conn_addr {

 charstring addr,

 integer ttl optional,

 integer num_of_addr optional

}

Defined Attributes

The SDP_attribute type is defined as a union of the following attribute types. There is an unknown attribute given to decode undefined attributes with a name and value.

	SDP Attribute
	TTCN 3 Type Mapping

	cat
	type record SDP_attribute_cat {

 charstring attr_value

}

	charset
	type record SDP_attribute_charset {

 charstring attr_value

}

	conf
	type record SDP_attribute_curr {

 charstring preconditionType,

 charstring statusType,

 charstring direction

}

	curr
	type record SDP_attribute_curr {

 charstring preconditionType,

 charstring statusType,

 charstring direction

}

	des
	type record SDP_attribute_des {

 charstring preconditionType,

 charstring strength,

 charstring statusType,

 charstring direction

}

	fmtp
	type record SDP_attribute_fmtp {

 charstring attr_value

}

	framerate
	type record SDP_attribute_framerate {

 charstring attr_value

}

	inactive
	type record SDP_attribute_inactive {

}

	keywds
	type record SDP_attribute_keywds {

 charstring attr_value

}

	lang
	type record SDP_attribute_lang {

 charstring attr_value

}

	orient
	type record SDP_attribute_orient {

 charstring attr_value

}

	ptime
	type record SDP_attribute_ptime {

 charstring attr_value

}

	quality
	type record SDP_attribute_quality {

 charstring attr_value

}

	recvonly
	type record SDP_attribute_recvonly {

}

	rtcp
	type record SDP_attribute_rtcp {

 charstring attr_value

}

	rtpmap
	type record SDP_attribute_rtpmap {

 charstring attr_value

}

	sdplang
	type record SDP_attribute_sdplang {

 charstring attr_value

}

	sendrecv
	type record SDP_attribute_sendrecv {

}

	sendonly
	type record SDP_attribute_sendonly {

}

	tool
	type record SDP_attribute_tool {

 charstring attr_value

}

	type
	type record SDP_attribute_type {

 charstring attr_value

}

	unknown
	type record SDP_attribute_tool {

 charstring name,

 charstring attr_value optional

}

8.3.5 Additional requirements for codec implementations (DHCP/DNS)

The DHCP/DNS codec shall convert TTCN descriptions into/from octet streams as specified in the RFCs. The TTCN type definitions for DHCP/DNS types follow closely the data formats defined in the corresponding RFCs (RFC 1035, RFC 1533, RFC 2131, RFC 3315, RFC 3319 and RFC 3361).

The only special case to be considered is when a TTCN length field in a DHCP/DNS record is set to 0, in which case the encoder shall compute the proper length value during encoding. This agreement relieves the test case writer of complex length computations which are not relevant to the testcase.

8.3.6 Additional requirements for codec implementations (XML)

Registration Information
The used XML schema is taken directly from the RFC 3680.

The header taken from the XML Schema [RFC 3680 section 5.4] has to be generated in the Encoder automatically and will not be checked within the receive statement, thus it must not be decoded. This header is NOT declared in the type system definition in TTCN-3

<?xml version="1.0"?>

 <reginfo xmlns="urn:ietf:params:xml:ns:reginfo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="0" state="full">
In normal cases the mapping is straight forward. All Sequences are defined as a set or record type. Examples of the Type Mapping are below:
	XML Schema rule of RFC 3680

	TTCN-3 Type Mapping

	<xs:element name="reginfo">

 <xs:complexType>

 <xs:sequence>

 <xs:attribute name="version" type="xs:nonNegativeInteger"

use="required"/>

 <xs:attribute name="state" use="required">

 <xs:simpleType>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

	type set reginfoElement {

reginfoSequence sequence,

nonNegativeInteger version,

reginfoAttribute state,

Namespaces namespaces optional

}

	 <xs:sequence>

 <xs:element ref="tns:registration" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

	
type record reginfoSequence {

Registrations registration,

Any anyName optional

}

	 <xs:element name="registration">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:contact" minOccurs="0" maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="aor" type="xs:anyURI" use="required"/>

 <xs:attribute name="id" type="xs:string" use="required"/>

 <xs:attribute name="state" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="init"/>

 <xs:enumeration value="active"/>

 <xs:enumeration value="terminated"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

	
type set of registration Registrations;

type set registration {

registrationSequence sequence,

XSDAUX.anyURI aor,

XSDAUX.string id,

registration_stateAttribute state

}

3GPP IM CN subsystem

The used XML schema is taken directly from 24.229-1 [5] , clause 7.6.
	XML Schema rule of 24.229, clause 7.6

	TTCN-3 Type Mapping

	<!ELEMENT ims-3gpp (

 alternative-service?, service-info?)>

<!ATTLIST ims-3gpp version CDATA #REQUIRED>

<!-- service-info element: The transparent data received from HSS for AS -->

<!ELEMENT service-info (#CDATA)>

	
type record IMCN_Subsystem_XMLBody {

AlternativeService alternativeService optional,

charstring serviceInfo optional,

integer version

}

	<!-- alternative-service: alternative-service used in emergency sessions -->

<!ELEMENT alternative-service (

 type, reason)>

<!ELEMENT type (emergency)>

<!ELEMENT reason (#PCDATA)>

	
type record AlternativeService {

charstring typeName ("emergency"),

charstring reason

}

8.4.

Textual Codec Requirements (Details)

8.4.1
Encoder
The encoding is straight forward. The TCI Interface method encode(in Value value) which returns the TriMessageType from the provided (TciCDProvided) must be implemented. Selection of the relevant String field name should be used to generate an ASCII Byte Stream which provides the complete message.

Some hints for the implementation:
- Value interface

· The usage of the TCI Value API is recommended here.
- Whitespace/delimiter handling

- Should be included by the Encoder. There is no information given in the type system about whitespaces and delimiter.

-Long vs. Compact format

· Only the long format must be supported for the message header name
8.4.2
Decoder
For the decoder the TCI Interface method Value decode (in TriMessageType message,
in Type hyp) which returns the message Value must be implemented. Within this operation a parser must be instantiated which constructs the structured message values from the text message.

Some hints for the implementation:
- Value interface

· The usage of the TCI Value API is recommended here.
- Whitespace/delimiter handling

- Should be ignored by the Decoder. Just the values without spaces and delimiters should be handled by the decoder and represented in a template structure afterwards.

- Different formats

· The decoder must be able to handle all header codings, e.g., v, VIA, via, vIa etc.

· The long and the short format must be supported for the message header name
- Error handling

- All errors should be logged in addition to the TTCN-3 logging. If the message is not decodable it should return NULL, as specified in the TCI standard.
9
Design consideration

9.1
Channels configurations
9.2
Security

9.3
Test Suite Operations
Table 1: TSO definitions

	TSO Name
	Description

	
	

	o_Bitstring2Base64
	Type of the result: charstring
Parameters:
bitstring p_Bitstring

Description

Returns the Base 64 encoded value of p_Bitstring

	o_GetItemFromCommaList
	Type of the result: charstring
Parameters:

charstring p_CommaList,

integer p_ItemIndex,

integer p_NumberOfItems
Description

To get item number p_ItemIndex from a list of items separated by commas. The returned item must not have any white spaces at the beginning
Used with PIXIT for MT call test case

	o_IPv4Addr2Octetstring
	Type of the result: octetstring
Parameters:
IPAddr ipAddr

Description

converts an IPv4 Address (in dotted separated decimal text format) into an octetstring (32-bit address, according to RFC 1035 clause 3.4.1)

	o_isIPv4AddrEmbeddedInIPv6ToOctetstring
	Type of the result: octetstring
Parameters:
IPAddr ipAddr

Description

converts an IPv4 (dotted separated decimal) into a IPv6 address with embedded IPv4 address as defined in RFC 2373 clause 2.5.4

	o_IPv6Addr2Octetstring
	Type of the result: octetstring
Parameters:
IPAddr ipAddr

Description

converts an IPv6 Address (in text format, colon separated hexadecimal format) into an octetstring (128-bit address, according to RFC 3513)

	o_isIPv4Addr
	Type of the result: boolean

Parameters:
IPAddr ipAddr

Description

checks whether the IP Address in text format (dotted separated decimal) corresponds to an IPv4 address

	o_isIPv6Addr
	Type of the result: boolean

Parameters:
IPAddr ipAddr

Description

checks that the IP Address in text format (colon separated hexadecimal format) corresponds to an IPv6 address

	o_LengthOfSDPBody
	Type of the result: integer
Parameters:

SDP_Message p_SDP
Description

calculates the length of a message body in SDP

	o_LengthOfXMLBody
	Type of the result: integer

Parameters:
reginfoElement p_XMLBody

Description

Calculates the length of a message body in XML

	o_MD5
	Type of the result: charstring
Parameters:
charstring p_Data

Description

calculates the MD5 Message-Digest Algorithm according to RFC 1321

	o_PutInLowercase
	Type of the result: charstring
Parameters:
charstring par_string

Description

returns the equivalent string in lower case

9.4
AT commands
Annex B (normative):
Partial IXIT proforma

Notwithstanding the provisions of the copyright clause related to the text of the present document, 3GPP Organizational Partners grant that users of the present document may freely reproduce the partial IXIT proforma in this annex so that it can be used for its intended purposes and may further publish the completed partial IXIT.

B.0
Introduction

This partial IXIT proforma contained in the present document is provided for completion, when the related Abstract Test Suite is to be used against the Implementation Under Test (IUT).

Text in italics is comments for guidance for the production of a IXIT, and is not to be included in the actual IXIT.

The completed partial IXIT will normally be used in conjunction with the completed ICS, as it adds precision to the information provided by the ICS.

B.1
Parameter values

Table B.1: PIXIT

	Parameter name
	Description
	Type
	Default value
	Supported value

	px_AssociatedTelUri
	
	charstring
	
	

	px_AuthAMF
	
	bitstring (16)
	'0000000000000000'B
	

	px_AuthK
	
	bitstring (128)
	'00000000000000010000001000000011000001000000010100000110000001110000100000001001000010100000101100001100000011010000111000001111'B
	

	px_AuthN
	min 31, max 127 (TS 34.108 cl. 8.1.2)
	integer
	127
	

	px_AuthRAND
	
	bitstring (128)
	
	

	px_BearerInfo1
	Initial Bearer to be used
	integer
	
	

	px_BearerInfo2
	Bearer to be used for Secondary PDP Context
	integer
	
	

	px_CalleeUri
	
	charstring
	
	

	px_CalleeContactUri
	
	charstring
	
	

	px_CallingContactUri
	
	charstring
	
	

	px_CellId
	cell Identity for UMTS
	bitstring (28)
	
	

	px_CiphAlgo_Def
	Ciphering Algorithm
	CiphAlgo
	
	enumerated type: des_ede3_cbc, aes_cbc or nociph

	px_DHCPServer_IPAddr
	v4 of v6 format
	IPAddr
	
	

	px_DNS_DomainName
	
	charstring
	
	

	px_DNSServer_IPAddr
	v4 of v6 format
	IPAddr
	
	

	px_HomeDomainName
	Home Domain Name when using ISIM or the home domain name derived from px_IMSI when using USIM
	charstring
	3gpp.org
	

	px_InviteToTag
	
	charstring
	
	

	px_IPSecAlgorithm
	Integrity Algorithm
	IntAlgo
	
	enumerated type; hmac_md5_96, hmac_sha_1_96

	px_IPv4OrIPv6
	
	charstring
	
	

	px_Opaque
	
	charstring
	
	

	px_P_CSCF_DomainName
	
	charstring
	
	

	px_P_CSCF_DomainName_2
	Additional P-CSCF FQDN (Full Qualified Domain Name) for special tests, e.g. “P-CSCF-Node2.etsi.org”
	charstring
	
	

	px_P_CSCF_DomainName_3
	Idem
	charstring
	
	

	px_P_CSCF_IPAddr
	v4 of v6 format
	IPAddr
	
	

	px_P_CSCF_IPAddr_2
	Additional P-CSCF address for special tests

v4 of v6 format
	IPAddr
	
	

	px_P_CSCF_IPAddr_3
	Idem
	IPAddr
	
	

	px_Pcscf
	P-CSCF
	charstring
	pcscf.3gpp.org
	

	px_PeerUE_IPAddr
	v4 of v6 format
	IPAddr
	
	

	px_Port_pc
	protected Client port at the SS
	integer
	
	

	px_Port_ps
	protected Server port at the SS
	integer
	
	

	px_Private_UserId
	Private User Identity when using ISIM or private user identity derived from px_IMSI when using USIM
	charstring
	privateuser@3gpp.org
	

	px_Public_UserId
	Public User Identity when using ISIM or public user identity derived from px_IMSI when using USIM
	charstring
	sip:localuser@3gpp.org
	

	px_RANTech
	RAN Technology
	RANTech
	
	enumerated type: GERAN, UTRAN_FDD or UTRAN_TDD

	px_RegisterExpiration
	
	charstring
	
	

	px_RSeqNumFor183
	
	integer
	
	

	px_Scscf
	
	charstring
	
	

	px_SDPPort
	
	integer
	
	

	px_SIP_URI_2
	used in PAssocURI
	
	
	

	px_SIP_URI_3
	used in ServiceRoute
	
	
	

	
	
	
	
	

	px_ToTagRegister
	
	
	
	

	px_ToTagSubscribeDialog
	
	
	
	

	
	
	
	
	

	px_UE_IPAddr
	v4 of v6 format
	IPAddr
	
	

	px_TestAutomation
	If set, MMI commands are sent to the MMI port instead to a pop-up window
	boolean
	false
	

B.1.1
SDP parameters for MT call test case

This clause contains parameters to describe one to three media that the SS will propose to the UE in the INVITE Request. This information shall be compatible with the UE’s capabilities.
Table B.2: SDP parameters for MT call
	Parameter name
	Description
	Type
	Default value
	Supported value

	px_NumberOfMedia
	Number of media description
	integer
	
	1, 2, 3

	For each media description, the following parameters shall be supplied:

	px_Media
	Media type
	charstring
	
	audio, video, text, application, message

	px_MediaPort
	Transport port to which the media stream is sent
	integer
	
	Integer within the range 49152 - 65535

	px_Proto
	Transport protocol
	charstring
	
	UDP, RTP/AVP, RTP/SAVP, TCP, RTP/AVPF, TCP/TLS

	px_FmtNumber
	Number of Media format description
	integer
	
	

	px_FmtValues
	Value of each media format description (in a comma separated list)
	charstring
	
	

	px_Bandwidth
	Bandwidth value for b=AS (only if
RTP/RTCP is used)
	integer
	
	

	px_RS_Bandwidth
	Bandwidth value for b=RS (only if
RTP/RTCP is used)
	integer
	
	

	px_RR_Bandwidth
	Bandwidth value for b=RR (only if
RTP/RTCP is used)
	integer
	
	

	px_AttribNumber
	Number of attribute (“a=”) lines (excluding ‘curr’ and ‘des’ lines)
	integer
	
	

	px_AttribValues
	Value of each of the attribute lines, excluding ‘curr’ and ‘des’ lines (in a comma separated list).
For example:
rtpmap:96 L8/8000, rtpmap:97 L16/8000, maxptime:80
	charstring
	
	

	px_LocalDir
	Direction tag for desired local resource
	charstring
	
	sendrecv, send, recv

	px_RemoteDir
	Direction tag for desired remote resource
	charstring
	
	sendrecv, send, recv

B.2
MMI questions

Table B.2 requests additional information needed for the execution of the MMI commands used in the ATS.

Table B.12: MMI questions

	Required information for MMI question

	Please REGISTER

	Please make a Call

	Please release the Call

	Please switch off the UE

	Please switch on the UE

	Please activate a PDP context for IMS Services

	Please configure UE to initiate a Dedicated PDP Context

	Please configure UE to initiate P-CSCF Discovery via PCO

	Please configure UE to NOT initiate P-CSCF Discovery via PCO

	Please de-REGISTER

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "x WGn" where �	x = "CT" for TSG CT, "RAN" for TSG RAN, "SA" for TSG SA, "GERAN" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "TSG x". �Examples: "CT WG4", "RAN WG5", "GERAN WG3", "TSG SA".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory necessary to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

