Page 1

3GPP TSG RAN WG5 Meeting #33
(
R5-063065
Riga, Latvia, 6-10 November 2006
	CR-Form-v9.2

	CHANGE REQUEST

	

	(

	34.123-3
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	CR to 34.123-3, extension of TSO for band VIII test

	
	

	Source to WG:
(

	MCC task 160

	Source to TSG:
(

	R5

	
	

	Work item code:
(

	TEI_Test
	
	Date: (

	30/10/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	1. The notation CONTAINING is used as NonCriticalextension in the UL messages RRCConnectionSetupComplete and UECapabilityInformation. Currently, in the asn.1 file rrc680.asn, CONTAINING is commented out due to lack of TTCN tool support. These fields shall be checked for band 8 or beyond, therefore a solution needs to be found at the SS implementation level.
2. Titles in clause 8.7.1 and 8.7.1.1 are misleading.
3. Clause 8.7.8 and 8.7.9 are both for EDCH TSO and should be grouped together.

	
	

	Summary of change:
(

	1.
It is proposed to define a TSO, PER-decoding the received BIT STRING against the IE RRCConnectionSetupComplete_r3_add_ext_IEs or UECapabilityInformation_r3_add_ext_IEs and checking the contents. The TSO is added in clause 8.7.1: o_CheckRadioAccessCap_FDD2
2.
Corrections of the titles in clauses 8.7.1 and 8.7.1.1.
3. The TSO in clause 8.7.9 is moved to 8.7.8. 8.7.9 is reserved for the future MBMS.

	
	

	Consequences if
(

not approved:
	Introduction of Band 8 and later will not be possible

	
	

	Clauses affected:
(

	8.7.1, 8.7.1.1, 8.7.8 and 8.7.9

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	Y
	
	 Test specifications
	Change 1 has impact on TTCN

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

8.7.1
Test suite operation definitions in common steps
Table 144: TSO definitions in common steps
	TSO Name
	Description

	o_AuthRspChk
	Type of the result: BOOLEAN
Parameters:

p_AuthRsp : AuthRsp

p_AuthRspExt : AuthRspExt

p_K : BITSTRING

p_RAND : BITSTRING

p_Ext : BOOLEAN

Description

Checks the input parameter p_AuthRsp and p_AuthRspExt, both received in an Authentication Response, according to the authentication algorithm defined in the following procedure.

The extension, p_AuthRspExt, is optional. Its presence is indicated by p_Ext.

Returns TRUE if the Authentication Response contained in parameters p_AuthRsp and eventually p_AuthRspExt is correct, FALSE otherwise.

The value of tcv_Auth_n indicates whether the AuthRspExt has been provided by the UE or not (n=31, or 31 < n < 128). See 3GPP TS 34.108 [3] clause 8.1.2.

If not the parameter p_AuthRspExt is not to be used.

Algorithm (without the knowledge of tcv_Auth_n):

===

if NOT p_Ext EvaluateAuthRsp else EvaluateAuthRspAndAuthRspExt

EvaluateAuthRsp:

==============

resultbitstring = o_BitstringXOR(XRES, AuthRsp)

if resultbitstring is all 0s then there is a match.

EvaluateAuthRspAndAuthRspExt:

============================

XREShigh = o_BitstringXtract(XRES, 32, 32, 0)

/* XRES divides into 2 parts: the higher part of 32 bits related to AuthRsp and the lower part related to AuthRspExt */

/* SourceLength of 32 is only to ensure usage of the procedure */

resultbitstring = o_BitstringXOR(XREShigh, AuthRsp)

if resultbitstring is all 0s then there is a match for the first 32 bits:EvaluateAuthRspExt else Authentication failed.

EvaluateAuthRspExt:

=================

/* As AuthRespExt may not be octet aligned the last octet indicated in AuthRspExt is not used for checking */

if (AuthRspExt.iel = 1)

then Authentication passed

/* there was only 1 possibly incomplete octet which is not used */

else

{

AuthRspExthigh = o_BitstringXtract(AuthRspExt.authRsp, ((AuthRspExt.iel -1)* 8), (AuthRspExt.iel -1)* 8, 0)

/* extract (AuthRspExt.iel -1)* 8 bits starting from bit 0 */

XRESlow = o_BitstringXtract(XRES, ((AuthRspExt.iel -1)* 8 + 32), (AuthRspExt.iel -1)* 8, 32)

/* extract (AuthRspExt.iel -1)* 8 bits starting from bit 32 */

resultbitstring = o_BitstringXOR(XRESlow, AuthRspExthigh, (AuthRspExt.iel -1)* 8)

if resultbitstring is all 0s then there is a match for the bits following the first 32 bits else Authentication failed

	o_BitstringChange
	Type of the result: BITSTRING

Parameters:

P_Str: BITSTRING

p_Len: INTEGER

p_Offset: INTEGER

Description

Performs the manipulation of a bitstring by toggling the bit identified by p_Offset. The length of the string to be manipulated is specified in p_Len. This is only provided to help ensure that the p_Offset is less than p_Len.

Returns a resulting bitstring of length p_Len.

EXAMPLE 1:
o_BitstringChange('010101'B, 6, 5) produces '010100'B.

EXAMPLE 2:
o_BitstringChange('010101'B, 6, 0) produces '110101'B.

	o_BitstringConcat
	Type of the result: BITSTRING

Parameters:

P_Str1: BITSTRING

p_Str2: BITSTRING

p_Len1: INTEGER

p_Len2: INTEGER

Description

Performs the concatenation of 2 bitstrings of possibly different lengths.

The bit significance is from left to right, i.e. the MSB is at the left-hand side.

Returns a resulting bitstring p_Str1 || p_Str2 of length p_ Len1 + p_Len.

EXAMPLE:
o_BitstringConcat('010101'B,'11'B) produces '01010111'B of

length 6 + 2 = 8.

	o_BitstringXOR
	Type of the result: BITSTRING

Parameters:

P_Str1: BITSTRING

p_Str2: BITSTRING

p_Len: INTEGER

Description

Performs an XOR operation using 2 bitstrings of the same length (p_Len).

Returns a resulting Bitstring of length p_Len.

EXAMPLE:
o_BitstringXOR('0011'B, '0101'B, 4) produces '0110'B.

	o_BitstringXtract
	Type of the result: BITSTRING

Parameters:

P_Str: BITSTRING

p_SrcLen: INTEGER

p_TargetLen: INTEGER

p_Offset: INTEGER

Description

Performs the wrap around extract of a bitstring. The length of the string from which extraction is to be made is specified in p_SrcLen. The length of the bitstring to be extracted is indicated as p_TargetLen, the offset in the original string is indicated in p_Offset.

The bit position 0 is at the left side.

Returns a resulting bitstring of length p_TargetLen.

EXAMPLE 1:
o_BitstringXtract('101010'B, 6, 2, 1) produces '01'B.

EXAMPLE 2:
o_BitstringXtract('101010'B, 6, 4, 3) produces '0101'B, wrapping around.

EXAMPLE 3:
o_BitstringXtract('111000'B, 6, 4, 3) produces '0111'B, wrapping around.

	o_BMC_DrxScheduling
	Type of the result: BMC_ResultOfSchedulingLevel2
Parameters:

p_BMC_CBS_Message1 : BMCCBSMESSAGE

p_BMC_CBS_Message2 : BMCCBSMESSAGE

p_BMC_CB_RepPeriod : INTEGER

p_BMC_NoOfBroadcast_Req : INTEGER

p_Offset : BMC_DRX_Offset
Description

This TSO shall calculate all BMC CBS schedule Messages for the CBS messages as described in 3GPP TS 34.123-1, clause 7.4.3.1.

The TSO has to precalculate the CTCH Block SETs needed, i.e. it shall have all necessary knowledge (RLC segmentation, MAC handling, if needed) to predict the CTCH with BMC contents for the given input to be sent.

The TSO shall consider the BMC CBS Scheduling Level2 as described in 3GPP TS 25.324 [20], 3GPP TR 25.925 [44] and the description of BMC test architecture and test method in the present document, clause 6.8.

The TSO calculates the BMC CBS Schedule messages to predict its next BlockSet to be sent. In addition, a DRX scheduling Bitmap is created for each CTCH allocated TTI aligned to the pre-calculated offset in between 2 CTCH Block Sets.

The principle of DRX shall be followed by this TSO. I.e. BMC Messages shall be sent blockwise (CTCH Block Set) with predicted offset in between 2 Block Sets.

The TSO shall consider the following aspects to calculate the DRX Selection Bitmap and to create the BMC CBS Schedule messages:

1.
The first CTCH Block Set consists of the first BMC CBS Schedule message predicting the offset, length and content of the following Block Set where the BMC CBS Message1 shall be send as new message.

2.
The BMC CBS Message1 shall be repeated for p_BMC_CB_RepPeriod multiplied by p_BMC_NoOfBroadcast_Req times before the BMC CBS Message2 is broadcasted.

3.
The BMC CBS Schedule Messages shall be the last message of a CTCH Block Set, i.e. on the end of a Block Set.

4.
If no further repetition of BMC CBS Messages is needed, no further BMC CBS Schedule message shall be created.

output parameter:

DrxSelectionBitmap: The TSO creates a Bitmap as Octetstring for scheduled CTCH allocated TTI as described in 3GPP TS 34.123-3: clause 6.8.2 BMC test method and architecture.

CBS_Schedule_Message01, CBS_Schedule_Message02, CBS_Schedule_Message03:Considering the given BMC PDUs BMC_DRX_Offset and BMCCBSMESSAGE to be sent, the BMC Schedule messages have to be created according the given parameter.

	o_CheckRadioAccessCap_FDD2
	Type of the result: BOOLEAN

Parameters:

p_ReceivedBitstring : BITSTRING;

p_DecodingType: INTEGER;

p_UE_RadioAccessCapabBandFDD2 : UE_RadioAccessCapabBandFDD2
Description

The TSO PER-decodes p_ReceivedBitstring against the type indicated in p_DecodingType:

If p_DecodingType=0, the TSO PER-decodes against the type RRCConnectionSetupComplete_r3_add_ext_IE.

If p_DecodingType=1, the TSO PER-decodes against the type UECapabilityInformation_r3_add_ext_IEs.

It then checkes that the input parameter p_UE_RadioAccessCapabBandFDD2 in present in the decoded result. The TSO returns the boolean result TRUE if it is present, otherwise, TSO returns FALSE.

The TSO is required at decoding and matching of the BIT STRING CONTAINING RRCConnectionSetupComplete_r3_add_ext_IE and UECapabilityInformation-r3-add-ext-IEs in the RRC Connection Setup Complete and UE Capability Information messages.

	o_CheckStringStartWith
	Type of the result: BOOLEAN
Parameters:

p_SourceString: IA5String

p_StartString : IA5String

Description

o_CheckStringStartWith returns TRUE if the p_sourceString start with the p_StartString.

Otherwise it returns FALSE.

EXAMPLE:
o_CheckStringStartWith ("+CLCC:1,0,0,2,0;", "+CLCC:1,0,0")=TRUE */.

	o_ComputeSM_ContentsSpec
	Type of the result: OCTETSTRING

Parameters:

p_NumOfChars: INTEGER

p_Text: IA5String

Description

This operation provides a short message's contents with a specified number of characters 'p_NumOfChars', each represented by 7 bits. 'p_Text' is used as contents of the short message. If 'p_Text' contains less than 'p_NumOfChars' characters, 'p_Text' is repeated until the short message reaches the 'p_NumOfChars' characters long. The bits are arranged acc. to 3GPP TS 23.038 [34], clause 6.1.2.1.1.

max. 160 characters, i.e. 140 octets.

	o_ConcatStrg
	Type of the result: IA5String

Parameters:

P_String1: IA5String

p_String2: IA5String

Description

o_ConcatString concatenates 'p_String1' and 'p_String2' and returns the resulting string.

EXAMPLE:
o_ConcatString ("AT+CBST=0" , ",0") = "AT+CBST=0,0"

	o_ConvertIMSI
	Type of the result: IMSI_GSM_MAP

Parameters:

P_Imsi : HEXSTRING

The input parameter `p_Imsi` is a BCD string (subset of HEXSTRING), the result is of type IMSI_GSM_MAP.

	o_ConvertTMSI
	Type of the result: TMSI_GSM_MAP
Parameters:

p_Tmsi : OCTETSTRING

Description

The input parameter 'p_Tmsi' is an OCTETSTRING; the result is of type TMSI_GSM_MAP.

	o_ConvertPTMSI
	Type of the result: P_TMSI_GSM_MAP

Parameters:

p_PTMSI : OCTETSTRING

Description

The input parameter `PTMSI` is a OCTETSTRING, the result is of type P_TMSI_GSM_MAP.

	o_ConvtPLMN
	Type of the result: TMSI_GSM_MAP
Parameters: OCTETSTRING
p_MCC, p_MNC : HEXSTRING

Description

the functions of o_ConvtPLMN are as following:

1.
The least significant HEX of p_MNC is removed from p_MNC and inserted into p_MCC in the position left to the third HEX to form a new p_MCC of 4 HEXs, then swap the first HEX (left most, most significant Hex) with the second HEX of the new p_MCC.

2.
Swap the first Hex with the second HEX of the remaining part of p_MNC and append it to the new p_MCC formed in Step1 above.

EXAMPLE 1:
o_ConvtPLMN('123'H, '456'H) = '216354'O.

EXAMPLE 2:
o_ConvtPLMN ('234'H, '01F'H) = '32F410'O.

	o_FirstDigit
	Type of the result: B4

Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter p_BCDdigits shall be a BCD string (subset of HEXSTRING), the result is a BITSTRING[4] of a binary representation of one BCD digit.

The function of the o_FirstDigit is to return the first (most significant) digit of the input parameter 'p_BCDdigits'.

EXAMPLE 1:
o_FirstDigit('12345') = '0001'B.

EXAMPLE 2:
o_FirstDigit('012345678') = '0000'B.

	o_GetBit
	Type of the result: BITSTRING
Parameters:
p_Source: BITSTRING

p_DataLength: INTEGER

Description

o_GetBit returns the BITSTRING of length p_DataLength extracted from p_Source.

The extraction shall start in the bit position 0 (at the left).

	o_GetN_OctetsFromPRBS
	Type of the result: OCTETSTRING
Parameters:

p_Start, p_N: INTEGER

Description

This operation returns N octets from a repeated pseudo random bit sequence, starting with octet position p_Start. The PRBS is the 2047 bit pseudo random test pattern defined in ITU-T Recommendation O.153 [45] for measurements at 64 kbit/s and N x 64 kbit/s

o_GetN_OctetsFromPRBS(p_Start, p_N) generates an OCTETSTRING containing p_N octets starting from octet number p_Start in the PRBS.

Requirements

p_Start 0

p_N (1

Definition

Define the 2 047 bit PRBS sequence b(i) as an m-sequence produced by using the following primitive (over GF(2)) generator polynomial of degree 11:

X^11 + X^9 + 1

This sequence is defined recursively as:

b(i) = 1

, i = 0,1,...,10

b(i) = b(i - 2) + b(i - 11) modulo 2
, i = 11,16,...,2046

The OCTETSTRING, o(j) generated by the present TSO is produced by extracting p_N octets from the repeated sequence b(i) as follows:

o(j,k) = b(((n_Start + j) * 8 + k) modulo 2047)

where:

j = 0,1,..,p_N - 1

k = 0,1,..7

o(j,k) is the kth bit of the jth octet in o(j),

o(j,0) is the MSB of the jth octet in o(j),

o(j,7) is the LSB of the jth octet in o(j),

Example results:

o_GetN_OctetsFromPRBS(0, 25) and o_GetN_OctetsFromPRBS(2047, 25) both return:

'FFE665A5C5CA3452085408ABEECE4B0B813FD337873F2CD1E2'O

o_GetN_OctetsFromPRBS(255, 25) and o_GetN_OctetsFromPRBS(255 + 2047, 25) both return

'01FFCCCB4B8B9468A410A81157DD9C9617027FA66F0E7E59A3'O

	o_GetPI
	Type of the result: BITSTRING

Parameters:

p_Imsi : HEXSTRING
p_Np: INTEGER

Description

PI = drx_index mod np

The drx_index is calculated as described hereafter:

drx_index = (p_Imsi / 8192))

 This calculation is defined in TS 25.304 clause 8.3.

NOTE: the IMSI is passed as HEXSTRING, the relevant conversion shall be done.

	o_GetSC_TimeStamp
	Type of the result: TP_ServCentreTimeSt

Parameters:

p_timezone : TZONES

This operation provides the hexstring containing the Service Centre Time Stamp (SCTS) according to 3GPP TS 23.040 [35], clauses 9.2.2.1 and 9.2.3.11. The TSO reads the current time of the test systems clock and transforms the time in combination with the input parameter 'timezone' into a service centre time stamp.

Example:

2002 April 18, 15:32:46, timezone=4

o_GetSC_TimeStamp returns 20408151236440

TPSCTS is HEXSTRING[14]

	o_HexToDigitsMCC
	Type of the result: MCC
Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter p_BCDdigits shall be a BCD string (subset of HEXSTRING), the result is a SEQUENCE (SIZE(3)) OF digit (MCC).

NOTE:
The length of p_BCDdigits shall be 3. User shall take the responsibility of fulfilling this requirement.

EXAMPLE 1:
o_HexToDigitsMCC('111'H) = {1, 1, 1}.

EXAMPLE 2:
o_HexToDigitsMCC('123'H) = {1, 2, 3}.

	o_HexToDigitsMNC
	Type of the result: MNC
Parameters:

p_BCDdigits : HEXSTRING

Description

The function of this operation is:

1.
The least significant HEX is removed if it is 'F' and the operation returns SEQUENCE (SIZE(2)) OF Digit.

2.
The operation returns SEQUENCE (SIZE(3)) OF Digit if all 3 HEX digits in p_BCDdigits are BCD Digit.

EXAMPLE 1:
o_HexToDigitsMNC('123'H) = {1, 2, 3}.

EXAMPLE 2:
o_HexToDigitsMNC('13F'H) = {1, 3}.

	o_HexToIA5
	Type of the result: IA5String

Parameters:

p_String: HEXSTRING

Description

o_HEX_TO_IA5 converts hexadecimal string 'p_String' to an IA5 String

EXAMPLE:
o_HEX_TO_IA5 ('15A'H) = "15A".

	o_IA5_ToOct
	Type of the result: OCTETSTRING
Parameters:

p_String : IA5String

Description

o_IA5_ToOct converts the string p_String from IA5String type to OCTETSTRING.

Each character is mapped onto an octet, and bit 8 is set to 0. This TSO shall be used to convert Access Point Numbers for example. See 3GPP TS 24008, clause 10.5.6.1

EXAMPLE:
o_IA5_ToOct ("15A") = '313541'O.

	o_IA5_BMC_ToOct
	Type of the result: OCTETSTRING

Parameters:

p_String :IA5String_BMC

p_DCS: TP_DataCodingScheme

Description

o_IA5_BMC_ToOct converts the string p_String from IA5String_BMC type to OCTETSTRING.

p_DCS determines how this is done (refer to 3GPP TS 23.038 [34] clause 5).

If a 7 bit packing is to be applied then proceed as described in 3GPP TS 23.038 [34] clause 6.1.2.2.1 and clause 6.2.1. This is the default case.

If 8bit data is to be used then proceed as described in 3GPP TS 23.038 [34] clause 6.2.2.

If UCS2is to be used then proceed as described in 3GPP TS 23.038 [34] clause 6.2.3.

The type IA5_BMC implies that the length of p_String is restricted to 1..1395 octets.

(Refer to 3GPP TS 23.041 [36], 3GPP TS 23.038 [34], 3GPP TS 25.324 [20])

This TSO will always generate a BMC encoded message of 15 page of information. If the input message stream (p_String) is less than the size of required octet, then the input message will be concatenated to generate a string of required length based on p_DCS.

	o_IA5_IP_ToOct
	Type of the result: OCTETSTRING

Parameters:

p_String: IA5String

p_IP_V4: BOOLEAN

Description

o_IA5_IP_ToOct converts the string p_String from IA5String type to OCTETSTRING.

In case of IPv4, p_String represents an IP address consisting of a number of fields of digits, separated by dots. Each one of the numbers of which the IP address consists is converted into one octet. The dots separating the numbers are ignored.

EXAMPLE 1:
o_IA5_IP_ToOct ("200.1.1.80", TRUE) = 'C8010150'O.

EXAMPLE 2:
o_IA5_IP_ToOct ("200.1.1.80.100", TRUE) should result in an appropriate error message.

EXAMPLE 3:
o_IA5_IP_ToOct ("300.1.1.80", TRUE) should result in an appropriate error message.

In case of IPv6, p_String represents an IP address consisting of a number of fields of hexadecimal digits, separated by ":".

a) In case of uncompressed IPv6 format each value separated by ";" is converted to 2 octets. The ":" separating the numbers are ignored.

EXAMPLE 1: o_IA5_IP_ToOct(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210, FALSE) = 'FEDCBA9876543210FEDCBA9876543210'O

EXAMPLE 2: o_IA5_IP_ToOct(FEDC:BA98:7654:3210:FEDC:BA98:7654, FALSE) should result in an appropriate error message.

EXAMPLE 3: o_IA5_IP_ToOct(1080:0:0:0:8:800:200C:417A,FALSE) = '108000000000000000080800200C417A'O

EXAMPLE 4: o_IA5_IP_ToOct(1080:0:0:0:8:800:20H:417A,FALSE) should result in an appropriate error message.

b) In case of compressed IPv6 format the use of "::" indicates multiple groups of 16-bits of zeros. The "::" can only appear once in an address.

EXAMPLE 1: o_IA5_IP_ToOct(FF01::101,FALSE) = 'FF010000000000000000000000000101'O

EXAMPLE 2: o_IA5_IP_ToOct(FEDC::7654:3210:FEDC::BA98:7654:3210, FALSE) should result in an appropriate error message.

p_IP_V4 is a BOOLEAN. When TRUE, an IP Version 4 address is to be converted, the maximum length of which is 4 octets, otherwise an IP Version 6 address is to be converted, the maximum length of which is 16 octets. See 3GPP TS 24.008 [9], clause 10.5.6.4.

	o_IA5_DigitsToOct
	Type of the result: OCTETSTRING
Parameters:

p_String: IA5String

Description

o_IA5_DigitsToOct converts the string p_String from IA5String type to OCTETSTRING.

Each pair of characters is considered a pair of numbers to be mapped onto 1 octet.

Each character of p_String shall represent a digit (0..9).

In case the number of characters is odd, then a filler '1111'B is used to fill the last octet required to represent the digits. See 3GPP TS 24.008 [9], clause 10.5.4.7.

EXAMPLE 1:
o_IA5_DigitsToOct ("0613454120") = '6031541402'O.

EXAMPLE 2:
o_IA5_DigitsToOct ("06134541209") = '6031541402F9'O.

EXAMPLE 3:
o_IA5_DigitsToOct ("A6134541209") should result in an appropriate error message.

	o_IntToOct
	Type of the result: OCTETSTRING
Parameters:

p_N : INTEGER

p_L: INTEGER

Description

o_IntToOct converts the INTEGER `p_N` into OCTETSTRING with length = 'p_L'.

EXAMPLE 1:
o_IntToOct(14,1) = '0E'O.

EXAMPLE 2:
o_IntToOct(18,1) = '12'O.

EXAMPLE 3:
o_IntToOct(18,2) = '0012'O.

	o_IntToIA5
	Type of the result:IA5String

Parameters:

p_N : INTEGER; p_L: INTEGER

Description

o_IntToIA5 converts the INTEGER `p_N` into IA5 String with length = 'p_L'.

EXAMPLE 1:
o_IntToIA5(160,3) = "160";

EXAMPLE 2:
o_IntToIA5(160,4) = " 160";

EXAMPLE 3:
o_IntToIA5(160,2) = "60".

	o_OctetstringConcat
	Type of the result: OCTETSTRING
Parameters:

p_Str1, p_Str2: OCTETSTRING

Description

o_OctetstringConcat Performs the concatenation of 2 octetstrings of possibly different lengths.

The octet significance is from left to right, i.e. the MSB is at the lefthand side.

Returns a resulting octetstring p_Str1 || p_Str2.

EXAMPLE:
o_OctetstringConcat('135'O, '9A38'O) = '1359A38'O.

	o_OctToBit
	Type of the result: BITSTRING

Parameters:

p_OctetStr: OCTETSTRING

Description

Converts an OCTETSTRING into a BITSTRING.

The size of the resulting BITSTRING is 8 times the size of the input OCTETSTRING.

	o_OctToInt
	Type of the result: INTEGER

Parameters:

p_oct : OCTETSTRING

Description

Transform an OCTETSTRING of length 1 to 4 into an unsigned 32 bits IINTEGER value.

If the input octet string is larger than 4, then only the first 4 octets shall be considered.

	o_OeBit
	Type of the result: BITSTRING
Parameters:

p_BCDdigits: HEXSTRING

Description

The input parameter 'p_BCDdigits' is a BCD string (subset of HEXSTRING), the result is BITSTRING[1].

The function of the o_OeBit is as the follows:

1.
It returns '1'B, if the length of the 'p_BCDdigits' is odd.

2.
It returns '0'B, if the length of the 'p_BCDdigits' is even.

EXAMPLE 1:
o_OeBit('12583') = '1'B.

EXAMPLE 2:
o_OeBit('87259957') ='0'B.

	o_OtherDigits
	Type of the result: OCTETSTRING
Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter ` p_BCDdigits ` is a BCD string (subset of HEXSTRING), the result is an even string of BCD digits, with eventually a filler 'F'H used. */

The function of the o_OtherDigits is as the follows:

1.
If the number of the 'p_BCDdigits' is odd, the operation removes the most significant digit, and then reverses the order of each pair of digits.

2.
If the number of the 'p_BCDdigits' is even, first the operation suffixes the `bcddigits` with 'F'H, then removes the most significant digit, and then reverses the order of each pair of digits.

EXAMPLE 1:
o_OtherDigi('12345') = '3254',

EXAMPLE 2:
o_OtherDigi('12345678') ='325476F8'.

See o_FirstDigit for the handling of the first digit.

	o_RoutingParameterIMSIResponsePaging
	Type of the result: RoutingParameter

Parameters:

p_IMSI : HEXSTRING

Description

The input parameter p_Imsi is a BCD string (subset of HEXSTRING), the result is of type RoutingParameter.

The tso returns the RoutingParameter, which consists of DecimalToBinary [(IMSI div 10) mod 1000]. The bits of the result are numbered from b0 to b9, with bit b0 being the least significant.

	o_SIB_PER_Encoding
	Type of the result: BITSTRING
Parameters:

p_SIB : SIB

Description

It returns the unaligned PER encoding (BIT STRING) of the input system information block p_SIB (without "Encoder added (1-7) bits padding"). The bits corresponding to the encoding of the CHOICE of the SIB type shall be removed.

Example:

 for the following SIBType1 value:

 SysInfoType1 ::=

 { cn-CommonGSM-MAP-NAS-SysInfo '32F4100001'H,

 cn-DomainSysInfoList

 { { cn-DomainIdentity ps-domain,

 cn-Type gsm-MAP : '0000'H,

 cn-DRX-CycleLengthCoeff 7},

 {cn-DomainIdentity cs-domain,

 cn-Type gsm-MAP : '0001'H,

 cn-DRX-CycleLengthCoeff 7}},

 ue-ConnTimersAndConstants

 { t-304 ms100,

 n-304 7,

 t-308 ms40,

 t-309 8,

 t-313 15,

 n-313 s200,

 t-314 s20,

 t-315 s1800,

 n-315 s1000},

 ue-IdleTimersAndConstants

 { t-300 ms400,

 n-300 7,

 t-312 10,

 n-312 s200},

 nonCriticalExtensions { }

 }

The operation returns BITSTRING:

"1000011001011110100000100000000000000000001011000100000000000000000100001000000000000000101000011001100000111110000011100111111111111111111100101111010011"

	o_SIB_Segmentation
	Type of the result: SegmentsOfSysInfoBlock

Parameters:

p_SIBBitString : BITSTRING

Description

The function of the o_SIB_Segmentation is as following:

1.
If the p_SIBBitString is less than or equal to 226 bits, the bit string is fit into a complete segment. If the segment is less than 226 bits but more than 214 bits, the segment shall be padded to 226 bits long with padding bits set to '0'B.

2.
If the input operand p_SIBBitString is longer than 226 bits it is segmented from left to right into segments, each segment except the last one is 222 bits. The last segment may be 222 bits or shorter. If the length of last segment is greater than 214 bits pad it to 222 bits with padding bits set to '0'B.

3.
The number of segments is assigned to recount field of the result.

4.
The first segment is assigned to seg1 field of the result, the second segment is assigned to the seg2 field of the result, the third segment is assigned to the seg3 field of the result, and so on till the last segment.

	o_SIB_SegmentationFirstSpecial
	Type of the result: SegmentsOfSysInfoBlock

Parameters:

p_SIB_BitString : BITSTRING

p_FirstSegLength : INTEGER

Description

The function of the o_SIB_Segmentation_FirstShort is as following:

1.
If the p_SIB_BitString is less than or equal to p_FirstSegLength bits, the bit string is fit into one segment.

2.
If the input operand p_SIB_BitString is longer than p_FirstSegLength bits it is segmented from left to right into segments, each segment except the first one and the last one is 222 bits . The first one is p_FirstSegLength long. The last segment may be 222 bits or shorter. If the length of last segment is greater than 214 bits pad it to 222 bits with padding bits set to '0'B.

3.
The number of segments is assigned to segCount field of the result.

4.
The first segment is assigned to seg1 field of the result, the second segment

is assigned to the seg2 field of the result, the third segment is assigned to the

seg3 field of the result, and so on till the last segment.

5.
The value of parameter p_FirstSegLength shall be less than 197.

	o_CheckPDUsAcknowledged
	Type of the result: BOOLEAN

Parameters:

p_NackList: NackList

Contains a list of integers (possibly empty), each of which corresponds to a PDU SN. Negative acknowledgement is expected for each of these PDUs.

p_FSN: INTEGER

Contains an integer representing the first SN expected to be acknowledged.

p_LSN: INTEGER

Contains an integer representing the last SN expected to be acknowledged.

p_SUFI_List: SuperFields

This parameter contains the received SUFI list to be checked.

Description:

This TSO is used to check that the given SUFI list contains any combination of SUFIs that fulfils the following requirements:

1.
Negatively acknowledges all PDUs whose sequence numbers are in p_NackList. Note that the list may be empty.

2.
Positively acknowledges all other PDUs with sequence numbers greater than or equal to p_FSN, and less than or equal to p_LSN.

Output:

This TSO returns a BOOLEAN value of TRUE if the SUFI list meets all of the requirements based on the given parameters.

Otherwise the TSO returns FALSE.

8.7.1.1
Specific test suite operation for Layer 2
This TSO is defined in BasicM, it is used by RLC and MAC ATSs.

Table 145: TSO definitions for RLC SUFI handling

	TSO Name
	Description

	o_SUFI_Handler
	Type of the result: ResAndSUFIs

Parameters:

p_SUFI_Params: SUFI_Params

p_SUFI_String: HEXSTRING

Conditions:

Inputs:

p_SUFI_Params: the list of checking criteria to be applied by the TSO

p_SUFI_String: the HEXSTRING received containing the SUFIs

Outputs:

the BOOLEAN result of the TSO:

TRUE if all checking and the filling of the SuperFields structure were successful;

FALSE otherwise; in this case the TSO shall produce sufficient output to allow
problem analysis

Table 146: ResAndSUFIs type and Processing of the SUFI parameters input to the TSO

	Parameter
	Type
	Setting
	Meaning
	Comment

	Lower Bound
	BITSTRING
	OMIT
	Do not use !
	

	(LB)
	[12]
	AnyOrOmit
	Do not use !
	

	Upper Bound
	
	Any
	Do not use !
	

	(UB)
	
	Value
	Use !
	

	NackList
	BITSTRING
	OMIT
	Do not use !
	

	Element i
	[12]
	AnyOrOmit
	Do not use !
	

	(Nacki)
	
	Any
	Do not use !
	

	
	
	Value
	Use !
	Check negative ack

	Window Size
	BOOLEAN
	OMIT
	Use !
	Check absence

	SUFI presence
	
	AnyOrOmit
	Do not use !
	

	(WSN_
	
	Any
	Use !
	Check presence

	presence)
	
	Value
	Use !
	Check presence

	MRW SUFI
	BOOLEAN
	OMIT
	Use !
	Check absence

	presence
	
	AnyOrOmit
	Do not use !
	

	(MRW_
	
	Any
	Use !
	Check presence

	presence)
	
	Value
	Use !
	Check presence

<Begin of changed clauses>

8.7.8
Specific test suite operation for E-DCH (Rel-6 or later)
Table 156: TSO definitions in E-DCH

	TSO Name
	Description

	o_CalculateE_DCH_TBSize
	Type of the result: INTEGER

Parameters:

p_tti: E_DCH_TTI

p_TableInd: E_TFCI_TableIndex

p_TB_Index: INTEGER

Description:

TSO implements tables defined in 25.321 Annex B.1 (tti 2ms Index 0), Annex B.2 (tti 2ms Index 1), Annex B.3 (tti 10ms Index 0), Annex B.4 (tti 10ms Index 1).

It accepts 3 input parameters:

p_TTI: the TTI of E-DCH (2ms or 10ms)

P_TableInd: the table index (0 or 1)

p_TB_Index: the TB index in the table (0..127 for tti 2ms Index 0), (0..125 tti 2ms Index 1), (0..127 tti 10ms Index 0), (0..120 tti 10ms Index 1)

The TSO then returns the corresponding TB Size from the appropriate Table and with given table index.

The value returned is '0' for any erroneous conditions (e.g. p_TB_Index out of range).

Example:

p_tti:2ms, p_TableInd:0, p_TB_Index:13 produces the result 185

	o_CheckUE_CapabilityContainer
	Type of the result: BOOLEAN

Parameters:

p_ReceivedBitstring : BITSTRING;

p_CapabilityContainerExpectedValue : UE_CapabilityContainer_IEs

Description:

The TSO PER-decodes p_ReceivedBitstring against the type of UE_CapabilityContainer_IEs.

It then matches the input parameter p_CapabilityContainerExpectedValue. The TSO returns the boolean result TRUE if the both are matched. Otherwise, TSO returns FALSE.

The TSO is required at decoding and matching of the BIT STRING CONTAINING UE-CapabilityContainer-IEs in the RRC connection setup complete and UE Capability Information messages.

8.7.9
Specific test suite operation for MBMS (Rel-6 or later)
Table 157: TSO definitions for MBMS test
	TSO Name
	Description

	
	

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "x WGn" where �	x = "CT" for TSG CT, "RAN" for TSG RAN, "SA" for TSG SA, "GERAN" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "TSG x". �Examples: "CT WG4", "RAN WG5", "GERAN WG3", "TSG SA".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory necessary to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

