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This contribution describes analytic computation of the correlation between transmitter-
receiver paths in a general MIMO system. Special cases are then presented, specifically:

1. Application to 2-D SCME with measured UE antenna responses
2. Application to the isotropic environment with SCME temporal characteristics

The results derived in this contribution are more general than the often-used Kronecker for-
mulation, but reduce to the Kronecker model when the Kronecker assumptions are satisfied.

The results of these cases will be used to provide a text proposal to the TR explaining
how to perform the conducted part of the Absolute Data Throughput Comparison Frame-
work when using these correlation-based models. This text proposal will be submitted in
RAN4#66bis.

2 General correlation-based channel model

With the general correlation-based channel-model formulation, the channel matrix for a
single tap can be expressed as [1, p. 40]

H = unvec (R}\éiMO vec(ﬂu,)> (1)
where H,, is a Gaussian matrix and

RMIMO = E[VQC(I:I) VeC(I:I)H] (2)

is the spatial correlation matrix.




[image: image2.png]Dao [2, Eq. (25)] shows for a general 3D scattering environment (which can be specialized
to a 2D scattering environment) that the elements of the spatial correlation matrix are
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when the cross-polar discrimination is the same for vertical and horizontal polarizations
XPD, = XPD;, = XPD. Moreover, F,, is the power transferred from transmitter n to
receiver q.

With p denoting either vertical (¢ = v) or horizontal (x = h), the gammas for the
transmitting antennas are defined as

) = [ [ E06.0) (FI=0(6,6))" p"(6,9) sind df do ()
0 0

where FT*W (9, ¢) is the p component of the pattern of transmitting antenna #n, and

pl®(0,¢) is the power angular spectrum. In our notation any phase shift caused by the

physical location of the array element has been accounted for by the patterns. Therefore,

we do not have the exponential factors seen under the integral signs in [2, Eq. (25)].
Similarly, the gammas for the receiving antennas are defined as

2r

e — [ [ Ef0(0,6) (FR0(0,0)) (6, 6) sin0 o do (5)
0 0

where Ffm(“)(ﬁ, ¢) is the 1 component of the pattern of receiving antenna #¢q, and p™* (6, ¢)
is the power angular spectrum.

3 Standard 2D SCME model

In this section we consider one of the clusters of a standard 2D SCME model [3]. For this
model, all transmission and reception take place in the § = 7/2 plane, so the power angular
spectra are

p(0,¢) = 0(0 — m/2) PAS™(9) (6)
and
p"(0,6) = 6(6 — m/2) PAST(9). (7)
The power-azimuth spectrum is different for each cluster as defined by the SCME model.
Inserting these expressions into the general formulas above gives

21

G = [ ER(6) (FI0(6))" PAS™(0) do ®)

0

and
2

) = [ FE(9) (F00(9))" PAS™(9) do )

0
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Consider a special case where the transmitting antennas are two ideal crossed dipoles

located at the origin. The dipole directions are v = (X+2)/v/2 and Vo = (—x+2)/v/2, and

their patterns in the § = 7 /2 plane are (v denotes the # component and h the ¢ component)

FOg) = =1, F () = —sing, (10)

and
B = -1, FE™(¢) =sing (11)

where we have normalized to make the gammas simple. Hence, when the power-angular
spectrum is normalized, the gammas for the transmitting side are

Tx(v Tx(v Tx(v x(v
711():712():721():752():1 (12)
and )
Tx(h Tx(h Tx(h Tx(h . T
711( ) = —712( ) = —721( : :722( ) = /51n2¢ PAS™(¢) d¢. (13)

0

For the receive-side we evaluate the integral-expression for 4/ numerically using the
measured reference antenna patterns.

4 Receive-side scatterers uniformly distributed over a
sphere

In this section we develop a channel model that will be helpful for the derivation in the
next section of the isotropic channel model with SCME temporal characteristics. Assume
that the receive-side scatterers are uniformly distributed over a sphere and XPD = 1. Then
pP(0, ) = 1 and we get

Elhpm (t) 15, (8)] = \/ Py Pan (ﬂﬂ”) - ﬁff“) (vﬁf(”) - 7,52““) (14)

where

2w

) 4y Reh) — / / F2(0,0) - (F1*(0,6)) sin0df do (15)

0 0

and Ff”(@, ¢) is the full complex radiation pattern (both components included) of receiving
antenna #¢q. The isotropic correlation coefficient ,ofqm obtainable from [4, p. 576] is

K
Rx pq
Pog = T (16)
" pp—~rqq
where )
K —//FRf(e 6)- (FI(0,6)) sinfdfd 17
pq — D ) q ) s ¢ ( )




[image: image4.png](Of course, K, = K,, = 1 if the patterns are normalized.) Hence, if the receive-side scatter-
ers are uniformly distributed over a sphere and XPD = 1, E[h, . (t)h; ,(t)] is proportional
to the isotropic correlation coefficient of the receiving antennas:

Elhym (8 b, (8)] = [ K K g \/ P (vﬁi(” +7T“”(h)> (18)

5 Isotropic receive-side environment connected through
a set of relay antennas to a 2D SCME model

Assume that a standard 2D SCME model [3] is connected to an isotropic environment
through a set of relay antennas. In [5] we presented the geometric-based description of this
combined model. In this section we give the corresponding correlation-based description
using the framework introduced above.

According to [5, Eq. (10)], the elements of the channel matrix for the combined channel
model can be expressed as

U
ZAU RUSCME) (¢ (19)
=1

where v is the index for the relay antennas (there are U relay antennas in play), h{ZCME)(t)
is the SCME channel matrix element (for a single tap), and

] 1 - u (v U T
A(uﬂg = Fz[ (4, )FR( (0 e,¢e)+ﬁéj’ )FpR (h)(ebw) . (20)

0 ¢=1

Here j is the isotropic state index, and ¢ is the plane-wave index (there is a total of L

plane waves in play). Moreover, Dy is a constant, and agj “) and ﬁéj’“) are the plane-wave
amplitudes determined by [5, Egs. (2)-(3)].
Using the fact that the relay antennas are uncorrelated, we get

Elhym(t)hy, (8)] = E [z AQ) (AD) hSTME (1) (RSCME) <t>)*] : (21)

According to [6], the isotropic correlation coefficient pf can be expressed (for each u) as an
average over the isotropic state index:

e E[A9(45) (22)
el el aar]

Ppq ,
\/EUA(J,?

Therefore, the desired matrix elements E[h,m, (t)h;, (t)] can be expressed as

E[hpm(t) = qu Z \/ A

where F [hfﬁfME) (t) (h(uiCME) (t))j is determined above. Again, E[h,,(t)h ()] is propor-
tional to the isotropic correlation coefficient of the receiving antennas.

E|[45[ | E[pse P @ (hemP0) ] @3)
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