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Introduction

This contribution is a text proposal for TR 38.803 to add Co-existence simulation scenario, assumption, and methodology. These proposals are based on the agreed WF [1] with following correction.

· LOS probability of outdoor users for UMa in Table 5.2.2.1-1 are modified:
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[1] R4-168953, “WF on Simulation assumptions of Co-existence study for WP5D,” NTT DOCOMO, INC., 3GPP TSG-RAN WG4 Meeting #80bis, Ljubljana, Slovenia, 10 – 14 October, 2016.

Text Proposal for TR 38.803
----- Unchanged sections omitted -----
----- Start of Text proposal -----
5
Co-existence study
5.1
Co-existence simulation scenario
Editor’s note: intended to capture specific scenarios such as operation system (eMBB, Massive MTC etc) systems in terms of aggressor system, victim system and their directions

Table 5.1 summarizes the proposed initial simulation scenarios. The list will be reviewed when the work on the simulation scenarios progresses. 

Table 5.1: Summary of initial simulation scenarios
	No.
	Aggressor
	Victim
	Simulation frequency
	Direction
	Usage scenario
	Deployment Scenario

	1
	NR, 200MHz
	NR, 200MHz
	30 GHz
	DL to DL
	eMBB
	Indoor hotspot

	2
	NR, 200MHz
	NR, 200MHz
	30 GHz
	DL to DL
	eMBB
	Urban macro

	3
	NR, 200MHz
	NR, 200MHz
	30 GHz
	DL to DL
	eMBB
	Dense urban

	4
	NR, 200MHz
	NR, 200MHz
	30 GHz
	UL to UL
	eMBB
	Indoor hotspot

	5
	NR, 200MHz
	NR, 200MHz
	30 GHz
	UL to UL
	eMBB
	Urban macro

	6
	NR, 200MHz
	NR, 200MHz
	30 GHz
	UL to UL
	eMBB
	Dense urban

	7
	NR, 200MHz
	NR, 200MHz
	70 GHz
	DL to DL
	eMBB
	Indoor hotspot

	8
	NR, 200MHz
	NR, 200MHz
	70 GHz
	DL to DL
	eMBB
	Dense urban

	9
	NR, 200MHz
	NR, 200MHz
	70 GHz
	UL to UL
	eMBB
	Indoor hotspot

	10
	NR, 200MHz
	NR, 200MHz
	70 GHz
	UL to UL
	eMBB
	Dense urban

	11
	NR, 20MHz
	NR, 20MHz
	30 GHz
	UL to UL
	eMBB
	Urban macro


If companies want to provide results for 45GHz for indoor hotspot and dense urban micro, it is optional.
5.2
Co-existence simulation assumption
Editor’s note: intended to capture specific simulation parameters such as frequencies, antenna pattern cell layouts and so on.
5.2.1
Network layout model
5.2.1.1
Urban macro

Details on urban macro network layout model are listed in Table 5.2.1.1-1 and 5.2.1.1-2.

Table 5.2.1.1-1: Single operator layout for urban macro
	Parameters
	Values
	Remark

	Network layout
	hexagonal grid, 19 macro sites, 3 sectors per site with wrap around
	 

	Inter-site distance
	Case 1: 500m
Case 2: 300m
	Note 1, 2

	BS antenna height
	25 m
	 

	UE location
	Outdoor/indoor
	Outdoor and indoor
	 

	
	Indoor UE ratio
	Case 1: 80%
Case 2: 20%
	Note 1, 2

	
	Low/high Penetration loss ratio
	50% low loss, 50% high loss
	 

	
	LOS/NLOS
	LOS and NLOS
	Specified in TR38.900

	
	UE antenna height
	Same as 3D-UMa in TR 36.873
	 

	UE distribution (horizontal)
	Uniform
	 

	Minimum BS - UE distance (2D)
	35 m
	 

	Channel model
	UMa
	Specified in TR38.900

	Shadowing correlation
	Between cells: 1.0
Between sites: 0.5
	 

	Note: If we find any issue, then we can revisit parameters. Other cases are not precluded in addition to Case 1 and 2.

Note 2: Case 2 is used in scenario No. 11 described in section 11.


Table 5.2.1.1-2: Multi operators layout for urban macro
	Parameters
	Values
	Remark

	Multi operators layout
	coordinated operation (0% Grid Shift)
	 


Figure 5.2.1.1-1: Coordinated operation operation
	Coordinated Operation: each network with co-location of sites

	[image: image3.emf]Aggressor ==Victim

0% Grid Shift




5.2.1.2
Dense urban

Details on dense urban network layout model are listed in Table 5.2.1.2-1 and 5.2.1.2-2.

Table 5.2.1.2-1: Single operator layout for dense urban
	Parameters
	Values
	Remark

	Network layout
	Fixed cluster circle within a macro cell.
	note1

	Number of micro BSs per macro cell
	3
	3 cluster circles are in a macro cell. 1 cluster circle has 1 micro BS.

	Minimum distance between micro BSs in single operator
	57.9 m
	

	Radius of UE dropping within a micro cell
	< 28.9 m
	

	BS antenna height
	10 m
	 

	UE location
	Outdoor/indoor
	Outdoor and indoor
	 

	
	Indoor UE ratio
	80 %
	 

	
	50% low loss, 50% high loss
	Low/high Penetration loss ratio
	 

	
	LOS/NLOS
	LOS and NLOS
	Specified in TR38.900

	
	UE antenna height
	Same as 3D-UMi in TR 36.873
	 

	UE distribution (horizontal)
	Uniform
	 

	Minimum BS - UE distance (2D)
	3m
	 

	Channel model
	UMi
	Specified in TR38.900

	Shadowing correlation
	Between cite: 0.5
	Table 6.3.2.1 in TR37.809

	Note 1: Micro BS is randomly dropped on an edge of the cluster circle. All UEs communicate with micro BS, i.e. macro cell is only used for determining position of micro BS. As a layout of macro cell, hexagonal grid, 19 macro sites, 3 sectors per site model with ISD = 200m is assumed.


Figure 5.2.1.2-1: Network layout for dense urban
[image: image4.png]
Table 5.2.1.2-2: Multi operators layout for dense urban
	Parameters
	Values
	Remark

	Multi operator layout
	Cluster circle is coordinated
	 Note 1

	Minimum distance between micro BSs in different operator
	10 m
	

	Note 1: Macro cell is collocated. Micro BS itself is randomly dropped.


5.2.1.3
Indoor

Details on indoor network layout model are listed in Table 5.2.1.3-1 and 5.2.1.3-2.

Table 5.2.1.3-1: Single operator layout for indoor
	Parameters
	Values
	Remark

	Network layout
	50m x 120m, 12BSs
	 

	Inter-site distance
	20m
	 

	BS antenna height
	3 m
	ceiling

	UE location
	Outdoor/indoor
	Indoor
	 

	
	LOS/NLOS
	LOS and NLOS
	Specified in TR38.900

	
	UE antenna height
	1 m
	Specified in TR38.900

	UE distribution (horizontal)
	Uniform
	 

	Minimum BS - UE distance (2D)
	0 m
	 

	Channel model
	Indoor Office
	Specified in TR38.900

	Shadowing correlation
	NA
	 


Figure 5.2.1.3-1: Network layout for indoor
[image: image5.jpg]
Table 5.2.1.3-2: Multi operators layout for indoor
	Parameters
	Values
	Remark

	Multi operator layout
	Coordinated operation (0% Grid Shift)
	


5.2.2
Propagation model
5.2.2.1
Path loss

The Path loss model is summarized in Table 5.2.2.3-1 and the distance definitions are indicated in Figure 5.2.2.3-1. Note that the distribution of the shadow fading is log-normal, and its standard deviation for each scenario is given in Table 5.2.2.3-1.
Table 5.2.2.3-1: Pathloss models

	Scenario
	Pathloss [dB], fc is in GHz and d is in meters (6)
	Shadow 

fading 

std [dB]
	Applicability range, 

antenna height 

default values 

	UMa LOS
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	σSF=4.0

 σSF=4.0
	10m < d2D < d'BP 1)
d'BP < d2D <5000m

1.5m ≦ hUT≦ 22.5m

hBS = 25 m



	UMa NLOS
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	σSF =6
	10 m < d2D < 5 000 m
1.5 m ≦ hUT ≦ 22.5 m

hBS = 25 m

Explanations: see note 3

	UMi - Street Canyon
LOS
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	σSF=4.0

 σSF=4.0
	10m < d2D < d'BP 1)
d'BP < d2D <5000m

1.5m ≦ hUT≦ 22.5m

hBS = 10 m

	UMi – Street Canyon NLOS
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	σSF=7.82
	10 m < d2D < 5000m
1.5m ≦ hUT≦ 22.5m

hBS = 10 m 

Explanations: see note 4

	InH - Office LOS
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	σSF=3.0
	1<d3D<100m

	InH - Office NLOS
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	σSF=8.03
	1<d3D<86m

	Note 1:
d'BP  = 4 h'BS h'UT fc/c, where fc is the centre frequency in Hz, c = 3.0(108 m/s is the propagation velocity in free space, and h'BS and h'UT are the effective antenna heights at the BS and the UT, respectively. In UMi scenario the effective antenna heights h'BS and h'UT are computed as follows: h'BS = hBS – 1.0 m, h'UT = hUT–1.0 m, where hBS and hUT are the actual antenna heights, and the effective environment height is assumed to be equal to 1.0 m. In UMa scenario the effective antenna heights h'BS and h'UT are computed as follows: h'BS = hBS – hE, h'UT = hUT – hE, where hBS and hUT  are the actual antenna heights, and the effective environment height hE is a function of the link between a BS and a UT. In the event that the link is determined to be LOS, hE=1m with a probability equal to 1/(1+C(d2D, hUT)) and chosen from a discrete uniform distribution uniform(12,15,…,(hUT-1.5)) otherwise. 

Note 2:
The applicable frequency range of the PL formula in this table is 0.8 < fc < fH GHz, where fH = 30 GHz for RMa and fH = 100 GHz for all the other scenarios. It is noted that RMa pathloss model for >7 GHz is validated based on a single measurement campaign conducted at 24 GHz.
Note 3:
UMa NLOS pathloss is from TR36.873 with simplified formatand and PLUMa-LOS = Pathloss of UMa LOS outdoor scenario.

Note 4:
PLUMi-LOS = Pathloss of  UMi-Street Canyon LOS outdoor scenario.

Note 5:
Break point distance dBP  = 2π hBS hUT fc/c, where fc is the centre frequency in Hz, c = 3.0 ( 108 m/s is the propagation velocity in free space, and hBS and hUT are the antenna heights at the BS and the UT, respectively.
Note 6:
fc  denotes the center frequency normalized by 1GHz, all distance related values are normalized by 1m, unless it is stated otherwise.


Figure 5.2.2.3-1: Distance definitions
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	Figure7.4.1-1: Definition of d2D and d3D 
for outdoor UEs
	Figure 7.4.1-2: Definition of d2D-out, d2D-in 
and d3D-out, d3D-in for indoor UEs. Note that 
[image: image19.png]


5.2.2.2
LOS probability
The Line-Of-Sight (LOS) probabilities are given in Table 5.2.2.2-1.
Table 5.2.2.1-1: LOS probability
	Scenario
	LOS probability (distance is in meters)

	UMi – Street canyon
	Outdoor users:
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Indoor users:

Use d2D-out in the formula above instead of d2D



	UMa
	Outdoor users:
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where
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Indoor users:
Use d2D-out in the formula above instead of d2D

	Indoor – Open office
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	Note: 
The LOS probability is derived with assuming antenna heights of 3m for indoor, 10m for UMi, and 25m for UMa


5.2.2.3
O-to-I penetration loss
The Path loss incorporating O-to-I building penetration loss is modelled as in the following:
PL = PLb + PLtw + PLin + N(0, σP2)
where PLb is the basic outdoor path loss given in Section 5.2.2.1. PLtw is the building penetration loss through the external wall, PLin is the inside loss dependent on the depth into the building, and σP  is the standard deviation for the penetration loss. 
PLtw is characterized as:
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[image: image26.wmf]npi
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  is an additional loss is added to the external wall loss to account for non-perpendicular incidence;
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, is the penetration loss of material i, example values of which can be found in Table 5.2.2.3-1.
pi is proportion of i-th materials, where 
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N is the number of materials.
Table 5.2.2.3-1: Material penetration losses

	Material
	Penetration loss [dB]

	Standard multi-pane glass
	[image: image29.png]

	IRR glass
	[image: image30.png]

	Concrete
	[image: image31.png]

	Wood
	[image: image32.png]

	Note: 
f is in GHz


Table 5.2.2.3-2 gives PLtw, PLin and σP  for two O-to-I penetration loss models. The O-to-I penetration is UT-specifically generated, and is added to the SF realization in the log domain.
Table 5.2.2.3-2 O-to-I penetration loss model

	 
	Path loss through external wall: [image: image34.png] [dB]
	Indoor loss: [image: image36.png] [dB]
	Standard deviation: σP  [dB]

	Low-loss model
	[image: image37.png]

	0.5d2D-in
	4.4

	High-loss model
	[image: image38.png]

	0.5d2D-in
	6.5


d2D-in is minimum of two independently generated uniformly distributed variables between 0 and 25 m for RMa, UMa and UMi-Street Canyon. d2D-in shall be UT-specifically generated.
Both low-loss and high-loss models are applicable to UMa and UMi-Street Canyon. 
Only the low-loss model is applicable to RMa. 
The composition of low and high loss is a simulation parameter that should be determined by the user of the channel models, and is dependent on the use of metal-coated glass in buildings and the deployment scenarios. Such use is expected to differ in different markets and regions of the world and also may increase over years to new regulations and energy saving initiatives. Furthermore, the use of such high-loss glass currently appears to be more predominant in commercial buildings than in residential buildings in some regions of the world
. 

The pathloss incorporating O-to-I car penetration loss is modelled as in the following:
PL = PLb + N(μ, σP2)
where PLb is the basic outdoor path loss given in Section 7.4.1. μ = 9, and σP = 5. Optionally, for metallized car windows, μ = 20 can be used. The O-to-I car penetration loss models are applicable for at least 0.6-60 GHz. 
5.2.3
Beam forming antenna pattern model
5.2.4 ACLR and ACS modeling
From the AAS study [21], in which coexistence simulation was conducted to gain understanding of the AAS BS ACLR requirement. It was observed 

“The impact of correlation level to the system coexistence is evaluated. Simulation results in Case 1a(AAS to Legacy) and Case 1b(AAS to AAS) show that different correlation levels have little impact on the throughput loss due to the fact that the dominant source of adjacent channel interference is due to UE ACS”

Note the study was done based on two key assumptions, i.e. UE antenna pattern is omni-directional with 0dBi gain and the UE ACS level is 33dB. 

With this observation, it was concluded that it is not the spatial direction of ACLR, but the total amount of adjacent channel power radiated that matters in the coexistence performance. Also, it is noted that the current discussion in AAS for ACLR OTA requirement seems to indicate that TRP is the choice due to practical difficulties in implementation and testing [22]. 

For the UE antenna model, if UE has some kind of beamforming capacity, i.e. the omni-directional antenna model is no longer valid, in general the victim UE will experience less interference. This is because the inference will most likely come from a different direction than the wanted signal thus may experience less beamforming gain. 

Therefore, for DL it seems reasonable from the perspective of simulating worst case scenarios that we assume either BS ACLR or the adjacent channel interference can modeled as flat in space, and the UE ACS can be modeled flat in space. 

If this assumption is for DL, then the similar assumption could be made for the UL because:

· UE has a much small number of antennas, thus the effect of directivity should be smaller for ACLR (or the adjacent channel interference). It can also be reasonably assumed that the UE ACLR will play a dominant role than the BS ACS in the adjacent channel interference.
· Again, BS ACS flat in space would mean worse coexistence performance than actual performance because BS has better capability of steering its receive antennas to suppress interference. 

In terms of flatness in frequency, both ACLR and ACS would be flat based on the analysis above. If a UE occupies a smaller bandwidth than the channel bandwidth for transmission, a two stop ACLR model could be considered in frequency to avoid overly estimating interference, as done in LTE coexistence study [19].

Therefore, it is assumed that both ACLR (or the adjacent channel interference) and ACS are flat in both space and frequency. The ACIR model can be express as
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5.2.5
Transmission power control model
For downlink, no power control scheme is applied. 

For uplink, TPC model specified in Section 9.1 TR 36.942 is applied with following parameters.

–
CL-xile = 88 + 10*log10(200/X)

–
X: UL transmission BW

–
Gamma = 1

5.2.6
Received power model
The following model is applied: 
RX_PWR = TX_PWR – pathloss + G_TX + G_RX

where:

RX_PWR is the received signal power

TX_PWR is the transmitted signal power
G_TX is the transmitter antenna gain (directional array gain)
G_RX is the receiver antenna gain (directional array gain).
5.2.7
Other simulation parameters

	Parameters
	Indoor
	Urban macro
	Dense urban

	Channel bandwidth
	200MHz
	200MHz
	200MHz

	Scheduled channel bandwidth per UE (DL)
	200MHz
	200MHz
	200MHz

	Scheduled channel bandwidth per UE (UL)
	200MHz
	200MHz
	200MHz

	The number of active UE (DL)
	Same as the number of BS beam
	Same as the number of BS beam
	Same as the number of BS beam

	The number of active UE (UL)
	Same as the number of BS beam
	Same as the number of BS beam
	Same as the number of BS beam

	Traffic model
	Full buffer
	Full buffer
	Full buffer

	DL power control
	NO
	NO
	NO

	UL power control
	YES
	YES
	YES

	BS max TX power in dBm
	23dBm
	43dBm
	33dBm

	UE max TX power in dBm
	23dBm
	23dBm
	23dBm

	UE min TX power in dBm
	-40dBm
	-40dBm
	-40dBm

	BS Noise figure in dB
	note 1
	note 1
	note 1

	UE Noise figure in dB
	note 1
	note 1
	note 1

	Handover margin
	3dB
	3dB
	3dB

	Note 1: At least the following NF are used for simulation assumptions for the RAN4#81 meeting for both UE and BS. 30GHz: 9 and 11 dB, 45GHz: 11 and 13 dB, 70GHz: 13 and 15 dB.


5.3
Co-existence simulation methodology
Editor’s note: intended to capture specific simulation methodology. How to handle even wider channel bandwidths for NR than those for LTE-A, different RF parameters such as [TRP or EIRP or others] etc. are captured.

5.3.1
SINR target requirements for simulated services
5.3.2
Simulation description
----- End of Text proposal -----
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