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1 Background
The issue of polarization was introduced by contribution [1] in RAN4#74 in Athens. Continuing that discussion, [2], contributed in the current meeting, aims to further the discussion both by investigating the measurement method impact is more detail, and by deriving expressions supporting the claims in[1]. This contribution is supporting the discussion in 2 with regard to orthogonal polarizations.
2 Introduction

The polarization of a propagating electromagnetic wave is determined by the direction of its time varying electrical field which is always perpendicular to the propagation direction. (It can be noted that the magnetic field is perpendicular to the wave propagation direction and to the electrical field of the wave, but magnetic field has no relevance for the definitoin of the polarization.) [image: image1.emf]
Figure 1. counter-clockwise (transmit) polarization. The x-y plane is drawn at the point of observation. [Hayt, Buck, Engineering Electromagnetics, 8th ed., p. 399] 

 The polarization is the locus traced by the extremity of the time varying electrical field at a fixed observation point. The electrical field, and consequently also the polarization, is perpendicular to the wave propagation. Plane wave is assumed, and thus the polarization can be described by two unit vectors in a Cartesian coordinate system, as depicted in figure 1.
The polarization of an antenna is said to be the same as the electromagnetic wave transmitted from it in general.

3 Orthogonal linear polarizations
Linear polarizations in general are characterized by their electrical field direction being parallel to a plane parallel to the wave propagation direction. Linear polarizations are often characterized as “horizontal” if the electrical field is parallel to the horizon (assuming propagation close to earth). Similarly, if the electrical field is always perpendicular to the horizon, the polarization is referred to as “vertical”. 
The electrical field of the horizontal polarization can be described as:
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The electrical field of the vertical polarization can be described as:
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ϕ is any phase (time) difference between the two linearly polarized waves, ω is the angular speed (i.e. 2π times the frequency) of the carrier, and t is the time. (The wave number and propagation direction product is locked at the observation point so only t is varying). u is the E-field vector of the horizontal polarization, and v is the corresponding vector for the vertical polarization. xu is the unit vector in the x axis direction and yu is the unit vector in the y axis direction in a Cartesian coordinate system where the x-axis is parallel to the horizon and the y axis is orthogonal to the surface of the earth (and the wave propagation in the direction of the horizon). 
Orthogonality (trivial).
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(xu and yu are perpendicular by definition)

Therefore, the two polarizations are orthogonal at any instance and irrespective of the values of ωt or ϕ.

However, when creating polarizations as linear combinations of u and v, the value of ϕ will have great impact on the resulting polarization. E.g.:
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gives a 45° slanted linear polarization, whereas 
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gives a 45° slanted linear polarization perpendicular to g. 

│a│is the amplitude of g and h. It can be noted that the phase difference between the two linear components must be a multiple of π to produce a new linear polarization. The slant angle (relative to the (horizontal) x-axis) is decided by the relative amplitudes of the components (i.e. arctan(ay/ax)).

Since g and h are perpendicular, it is expected that they can be proven orthogonal:
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g and h are thus orthogonal. But u and g are not orthogonal:
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4 Orthogonal circular polarizations
Using xu , yu, and │a│ from above,  clockwise circular polarization can be described as
:
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Anticlockwise circular polarization can be described as:
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p and q are the respective E-field directions of the clockwise and anticlockwise circular polarizations. Compared to the linear cases above we can see that the phase difference between the two linear components must be π/2 (or any odd multiple thereof) and that the amplitude must be equal to produce perfect circular polarization.


[image: image13.emf]
Figure 2, electrical field directions depicted by arrows rotating in opposite directions in orthogonal circular polarizations. The tips of the arrows describe the circle. Note that at the current instant the polarizations are indeed perpendicular, but as they continue to rotate in opposite directions they will not remain so at any instant.
An animated view on circular polarization showing the electrical field vector rotation in the fixed plane and the two linearly polarized  components can be found in http://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif
Testing whether p and q are orthogonal:
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It is clear that p and q are not perpendicular at any given instance. Instead orthogonality must be proven in the sense of orthogonal functions on the period T. (In this case we pick the sinusoidal period of 2π.) Therefore we test if the mean over a period is zero:
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I.e.:
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It can be noted that the results holds on any integration interval of length nπ where n is an integer. Therefore it can be said that p and q are orthogonal over the interval of π.

A clockwise circular polarized antenna will thus not pick up any net power per half period of an anticlockwise circular polarization incident wave (assuming the reference direction is equal for the antenna and the wave).

It should be noted that that the polarization in transmit becomes the opposite in receive (i.e. the slant angle of the major axis and the circular direction changes. Thus, e.g. right circular antennas receive signals from other right circular antennas provided they are both defined in either transmit or receive.)

5 Elliptical polarizations
A propagating wave is generally not exactly linear or exactly circular but elliptic, which can be described as a linear combination of circular and linear polarizations. Any phase difference that is not a multiple of π/2 will generate elliptical polarization. Also any amplitude difference that is not combined with a multiple of π phase difference will generate an elliptical polarization.

Two orthogonal polarizations can be used to form any other polarization (varying both phase and amplitude relation between the two) through linear combination. 

If the phase is kept constant; using the above expressions it can be seen that a linear combination of g, h and p or g, h and q can form any elliptical polarization. Further it can be seen that the corresponding orthogonal polarization must have perpendicular linear components and opposite circular direction. I.e. the elliptic wave Ag + Bg + Cq has the orthogonal polarization of Bg - Ah + Cp (or -Bg + Ah + Cp which corresponds to a half period phase shift in the linear components). 

The E-field driving current into the antenna load is described by the scalar product of the incident wave and the antenna polarization times the square root of the antenna gain in the direction of the incident wave source. I.e. an antenna receiving an incident wave with the exact polarization of the antenna will experience the highest antenna gain.
6 Conclusion
· Polarizations can be classified as linear, circular or a combination thereof – elliptical.

· Real world polarizations are elliptical.

· Every polarization can be described as the linear combination of two orthogonal polarization components.
· The induced current in an antenna load is proportional to the scalar product of the polarizations of the antenna and the polarization of the incident electromagnetic wave.
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8 Terminology
The terminology used in this contribution is taken from TR37.842. and from [3].
Additional explanations of terms can be found below:

� See definitions of circular polarizations below.


� There are two ways of referring to circular polarization definitions: Either from the transmitter (wave propagation direction) or from the receiver antenna. The two definitions are opposite in the sense that clock-wise in one is anti-clockwise in the other system. They are still orthogonal in the same way though so the above applies in either way.
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