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1 Introduction
During the feasibility study item phase, the radiation behaviours, which mainly refer to the radiation pattern of the transmitted signals from the array, such as the in-band wanted signal and out-of-band unwanted signal were modelled for a single and multiple columns AAS BS which generates a single beam steering direction.
To specifying the requirements for AAS BS, it’s necessary to fully model the antenna radiation behaviours of AAS BS which generates multiple beam steering directions, which are more generic radiation behaviours. For example, cell-partitioning in the vertical or horizontal directions usually have at least two beams generated, and UE specific 3D beam forming have a group of beams generated by the AAS BS. We name this phenomenon as “spatial intermodulation”.
The issues associated with multiple beam steering directions are the inter-modulation products between signals with different steering directions would have much more beam directions generated. This is a complicated issue but it seems we have no option not to touch it in order to model more AAS applications. This issue was first discussed in Huawei’s contribution [1] when the study item discussion was first kicked off. Due to workload issue during the study item phase, the similar issue was partially touched and some very preliminary results were captured in Annex C.1 in TR37.840 [2] for information.
In the paper, we continue the discussions targeting at a complete arrangement for this issue. The radiation behaviours of a multiple column AAS BS were modelled for multiple steering beams generated. The general models for wanted signals as well for the IMD3 products were modelled and radiation patterns in close form formula were derived. 
Based on the generic models of the radiation pattern for a multiple column AAS BS with multiple beams, the models were further elaborated for cell partitioning, which is a kind of static beam forming, as well as for UE specific beam forming, which corresponds to the generic application of dynamic beam forming. 

Mathematics on array theory is extensively used in this paper.
2 General radiation behaviour modelling
2.1  Radiation behaviour for the wanted signals
The discussions are the continuations of the antenna 3D model as presented in Section 5.4.4 in TR37.840. Unless otherwise declared, the same set of symbols defined in Section 5.4.4 in TR37.840 is used, while the key difference in this section is the model the radiation pattern for AAS BS with multiple beams generated.
Without losing generality, there are 
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beams generated by a multi-column AAS BS. The signals of the k-th beam at all transmitters are defined as vector below
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              Equation (1)
where 
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 is the signal transmitted at the {
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-th, 
[image: image5.wmf]n

-th} transmitter for the 
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-th beam. The total signals for all the 
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beams are represented by the following vector 
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The beam steering factor 
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at the {
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-th, 
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-th} transmitter for the 
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-th beam is below

[image: image13.wmf](

)

(

)

(

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

×

×

×

-

+

×

×

-

×

-

×

=

k

k

H

k

V

k

n

m

k

n

m

d

m

d

n

i

a

w

j

q

l

q

l

p

sin

cos

1

sin

1

2

exp

ˆ

,

,

,

,

          Equation (3)
where 
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 are the vertical and horizontal beam steering directions for the 
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-th beam, and 
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is the real amplitude weighting applied to the {
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-th, 
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-th} transmitter for the 
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-th beam. Again, weighting vectors for the 
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-th beam is denoted by
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             Equation (4)
Weighting vectors for all the 
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beams form the following vector
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Note that we use 
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 instead of 
[image: image26.wmf]w

~

 to avoid the confusion with conjugation operation for a complex
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. Similar as defined in [2], the phase shift due to array placement for the {
[image: image28.wmf]m

-th, 
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-th} transmitter is defined as 

[image: image30.wmf](

)

(

)

(

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

×

×

×

-

+

×

×

-

×

=

j

q

l

q

l

p

sin

cos

1

sin

1

2

exp

,

H

V

n

m

d

m

d

n

i

v

              Equation (6)
in which 
[image: image31.wmf]q

is the elevation angle (0 deg represents perpendicular to array), 
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is the azimuth angle.
The phase shift for the 
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-th beam is defined as 
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                     Equation (7)
and the phase shift for all the 
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beams form the following vector
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The array factor for the 
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-th beam is defined as
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and the array factor for the 
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 beam is defined as 
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The complex output of the wanted signal at far field becomes
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where 
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 is the complex gain of the element antenna. Then the radiation pattern 
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                Equation (12)
Equation (12) can be further expressed as
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                         Equation (13)
where 
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is the conjugation of 
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and 
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 is the correlation matrix between all transmitted signals, and elements of this matrix denote the correlation between signals in the various transceiver paths.
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Usually, different beams transmit different signals, i.e.
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Furthermore, for the same signal transmitted at different transmitter forming a beam, a correlation level 
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 can be assumed between the signals transmitted at different transmitters, or
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The dimension of 
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                      Equation (17)
where the dimension of 
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. For simplicity but still having the correlation sufficiently modelled in the coexistence study, it is proposed to assume the same correlation level
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is a value between 0 and 1, between signals in transceiver paths, or 
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where 
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 are the transmitted signals sampled at time domain as 
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 samples. It is clear that 
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where 
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 is the all-1 matrix and 
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 is the unit matrix with 1 on the diagonal elements only. The radiation pattern is simplified as
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            Equation (20)
When 
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, the correlation matrix 
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, and the radiation pattern is the same as a passive antenna if their weighting vector 
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 is configured the same. Therefore the following equation can be used for a legacy system with a passive array antenna as well.
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When 
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, the correlation matrix 
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 is the unit matrix
[image: image78.wmf]I

 with 1 on the diagonal elements and the radiation pattern is the same as the radiation element, or the antenna shows no array gain for uncorrelated inputs.
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2.2  Radiation behaviour for the 3rd IMD products
Again, we assume the number of beams generated by the array is 
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and the total number of band limited signals transmitted at the {m-th, n-th} transmitter is also
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. We denoted the signal transmitted at the {n-th, m-th} transmitter for the 
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-th beam with phase shift already applied as 
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To model the 3rd order IMD products, the first step is to consider the signals in the in the frequency domain. The band limited signals
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where
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and
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                          Equation (23)
The total signal transmitted by the {n-th, m-th} transmitter can be denoted as
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The transmitter nonlinear property can be modelled as polynomial below
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The transmitter generates a group of different frequency combinations with different phase shift resulting different steering directions. The IMD3 products are frequency combinations of any three frequency
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                                   Equation (25)
And the IMD3 signal can be further expressed as
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Equation (26)
From the formula above, it’s clear than the direction of the sinusoid signal 
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                              Equation (27)
In the spatial domain, signals with direction at 
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directions presented at the {n-th, m-th} transmitter composite the following set of phase shift
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and the resulted phase shift of the IMD3 products at the output of the {n-th, m-th} transmitter composite the following set:
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The size of set 
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are defined in Equation (22),  and the beam pattern corresponding IMD3 products is 
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For all the IMD3 products with the directions within set 
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, the composite beam pattern can be expressed as
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3 Application modelling 
3.1 Vertical cell partitioning
Based on the above conclusion, it could be easy to obtain the theoretical ACLR model for a single-column AAS BS configured with vertical cell partitioning using the same carrier. The mean power of in-channel products received at far-field (fully correlation) is,
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And the signal strength in the adjacent-channel received at far-field (partially correlated) is,
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The spatial ACLR can be expressed as,
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Figure 1 shows the pattern for the wanted signal, 3rd intermodulation and the corresponding ACLR. Here, 
[image: image138.wmf]1
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 is assumed to be 9 deg and 
[image: image139.wmf]2

etilt

q

is 20 degrees. Obviously, it will improve ACLR of the main beam but worse the ACLR of the side lobe, what this means to the performance of whole network need to be further checked.
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Figure 1 Wanted signal and IMD3 pattern for vertical cell partitioning application 
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Figure 2 ACLR pattern for vertical cell partitioning application (with different correlation levels) 
3.2  Horizontal cell partitioning

Following the same methodology in Section 2.1, for a multi-column AAS BS configured with horizontal cell partitioning using the same carrier, the mean power of in-channel products received at far-field (fully correlation) is, 
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in which Am,n is the amplitude distribution of weighting factor.

And the signal strength in the adjacent-channel received at far-field (partially correlated) is,
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The spatial ACLR can be expressed as,
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Figure 3 ~5 show the radiation pattern for wanted signal, 3rd intermodulation and ACLR. Here, 
[image: image150.wmf]etilt

q

 is assumed to be 9 deg，
[image: image151.wmf]1,

escan

j

is -30deg and 
[image: image152.wmf]2,

escan

j

is 30 deg (0 deg corresponds to the normal direction of the sector).
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Figure 3 wanted signal pattern for horizontal cell partitioning application 
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Figure 4 3rd intermodulation product pattern for horizontal cell partitioning application (correlation level=0.5)
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Figure 5 ACLR pattern for horizontal cell partitioning application (correlation level=0.5)
3.3  UE-specific Beamforming
Based on the discussion in Section 2.1 and 2.2, ACLR for UE-specific beamforming can be written as,
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Take beamforming for 4 UEs as an example, Figure 6~8 show the wanted signal (the directions of the beams of wanted signal are generated randomly), 3rd intermodulation product and ACLR pattern. 
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Figure 6 Wanted signal pattern for UE specific beamforming scenario
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Figure 7 3rd intermodulation product pattern for UE specific beamforming scenario (correlation level=0.5)

[image: image159.png]



Figure 8 ACLR pattern for UE specific beamforming scenario (correlation level=0.5)
4 Conclusion
In this paper, we propose to model spatial ACLR pattern for AAS BS under different applications for further coexistence study.   
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