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1.
Discussion and Proposal
In the AAS SI (FS_AAS_BS_LTE_UTRA) it was agreed to define an array antenna model for system simulations. As an outcome of previous RAN4 meetings the contents of TR37.840 section 5.4.4 [1] has grown rapidly. It is now time to wrap it up and finalize the TR when the SI is closed. This contribution holds minor additions, editorial corrections, document alignments and clarifications. 

Specific corrections are: 

· Heading 5.4.4 changed to Array antenna model.
· Table 5.4.4.2-3 is added with summarized functions and parameters for multiple columns.

· The definition of down-tilt angle etilt is aligned with 3GPP in TR36.942 [2] and TR36.814 [3].
· Editorial clean-up

This is a revised version of R4-130147. It is proposed that corrections in attached text proposal are included in TR37.840. 
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5.4.4
Array antenna model

Currently a passive antenna is modeled as a single radiating source according to definition in TR 36.814, Table A.2.1.1-2. For AAS BS it was decided extend the antenna model and define an array antenna model based on multiple radiating sources..
5.4.4.1
Methodology

For a uniformly distributed array (ULA) antenna, shown in Figure 5.4.4.1-1 the radiation elements are placed uniformly along the vertical z-axis in a Cartesian coordinate system. The x-y plane constructs the horizontal plane. A signal acting at the array elements is in the direction of u. The elevation angle of the signal direction is denoted as 

[image: image1.wmf]q

 (defined between 0° and 180°, 90° represents perpendicular angle to the array antenna aperture) and the azimuth angle is denoted as  (defined between -180° and 180°).

[image: image3]
Figure 5.4.4.1-1. Antenna Array Geometry

The array antenna radiation is created by super-position including three main components:
· The element radiation pattern

· The array factor

· The signals applied to the system

Each component is defined in detail in section 5.4.4.1.1 to 5.4.4.1.5.
5.4.4.1.1
Element Pattern

A method similar to current 3GPP modelling used for passive antennas is applied for the element radiation pattern model, which is
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Where
· 
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 is the magnitude of the element pattern

· 
[image: image6.wmf]q

is the elevation angle is defined between 0° and 180° (90° represents perpendicular to array)
· 
[image: image7.wmf]j

is the azimuth angle is defined between -180° and 180°
· 
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 is the maximum directional gain of the radiation element (in dB), 
· 
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is the horizontal pattern of the radiation element, 
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where 
[image: image11.wmf]dB

3

j

 is the horizontal 3dB beam-width, and 
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 is the front-back ratio. 

· 
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is the vertical radiation pattern of the radiation element offset by 90° to point perpendicular to array, 
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where
[image: image16.wmf]dB

3

q

 is the vertical 3dB beam-width, 
[image: image17.wmf]v

SLA

is the side-lobe level limit.
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 is plotted in Figure 5.4.4.1.1-1 when 3dB=65o, SLAv=30 dB, 3dB=65o and Am=30 dB.
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Figure 5.4.4.1.1-1. Vertical and Horizontal element radiation patterns

5.4.4.1.2
Array factor for single column
The performance of the array depends on the spacing and weighting of the radiation elements, which can be represented by 
[image: image22.wmf]W
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, as the Hadamard product, i.e.,
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in which 
[image: image24.wmf]V

is the phase shift due to array placement, denoted as
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and 
[image: image27.wmf]W

is the weighting factor, which can provide control of side lobe levels and can also provide electrical down-tilt. For simplicity, the amplitude of the weighting vector is assumed to be identical for each radiation element. The phase of the weighting vector is used to implement electrical down tilt and is dependent on the required tilt and the element spacing. 
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where, 
[image: image30.wmf]etilt

q

 is defined as the down-tilt angle as defined in TR 36.814 (Meaning that for etilt=0 degrees the main beam is pointing perpendicular to the array antenna aperture).
For mechanical down-tilt, this can be handled by a coordinate system transformation described in TR 36.814 section A2.1.6.2 in details.
5.4.4.1.3
Array factor for multiple column
A planar uniform rectangular array (URA) antenna with 
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 radiation elements is employed for modelling AAS with multiple columns, as shown in figure 5.4.4.1.3-1. The numbers of the elements placed along y-axis and z-axis are 
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 and
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, respectively.

[image: image35]
Figure 5.4.4.1.3-1 Geometry distribution of AAS with multiple columns array

The array factor of the planar array can be represented by 
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, i.e.,
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in which 
[image: image38.wmf]V

is the phase shift due to array placement, denoted as
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[image: image42.wmf]W

is the weighting factor, which can provide control of side lobe levels and also to provide electrical steering, both horizontal and vertical. For simplicity, the amplitude of the weighting vector is assumed to be identical for each radiation element. The phase of the weighting vector is used to implement electrical steering and is dependent on the required horizontal and vertical steering angle and the element spacing.
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where 
[image: image45.wmf]etilt

q

is the electrical down-tilt steering, and 
[image: image46.wmf]escan

j

 is the electrical horizontal steering.
5.4.4.1.4
Signals and correlation matrix for single column
Correlation of 2 transceiver paths is represented by a correlation coefficient,0≤ρ≤1, defined below as the similarity of the unwanted signals at the output of 2 paths when an identical signal is applied at the input. Unwanted signals generated in the transceivers can under different circumstances be regarded as correlated , ρ=1, (e.g. unwanted signals generated by CFR (Crest Factor Reduction) will be generated digitally and hence identical in each path), or un-correlated,ρ=0, (e.g. amplified thermal noise is random in nature and hence will have no similarity in different paths). As the type of unwanted signal is implementation specific and hence unknown, the correlation matrix allows varying levels of correlation to be investigated so the worst case can be identified for specification purposes.
The signals at all elements are defined as


[image: image47.wmf](

)

(

)

(

)

(

)

[

]

T

N

t

s

,

,

t

s

,

t

s

t

S

K

2

1

=


The complex output of the array system at far field becomes
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where 
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 denotes the complex gain of the nth radiation element, together with the phase shift due to array placement, expressed as
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Then the radiation pattern of the antenna array is the mean output power which can be obtained by taking conditional expectation over 
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and R is the array correlation matrix defined by
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Elements of this matrix denote the correlation between signals in the various transceiver paths. For example, 
[image: image55.wmf]nm

R

denotes the correlation between the signals in the n-th and the m-th transceiver paths, assuming that the fast fading between antenna elements is spatially correlated.
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For simplicity but still having the correlation sufficiently modelled in the coexistence study, it is proposed to assume the same correlation level 
[image: image57.wmf]r

, where 
[image: image58.wmf]r

 is a value between 0 and 1, between signals in transceiver paths, or
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Note that uniform correlation may be an over-simplification of an active array implementation. When multiple sub-arrays are within the antenna elements it is possible they have different correlation levels. The modelling of this effect is FFS.
It is clear that 
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where U is the all-1 matrix and I is the unit matrix with 1 on the diagonal elements only. The radiation pattern is simplified as
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When 
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, the correlation matrix 
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 is an all-1 matrix 
[image: image64.wmf]U

, and the radiation pattern is the same as a passive antenna, if their weighting vector 
[image: image65.wmf]W

 is configured the same. Therefore the following equation can be used for legacy system with a passive array antenna as well.
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When 
[image: image67.wmf]0
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, the correlation matrix 
[image: image68.wmf]R

 is the unit matrix I with 1 on the diagonal elements and the radiation pattern is the same as the radiation element, or the antenna shows no array gain for uncorrelated inputs.
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5.4.4.1.5
Signals and correlation matrix for multiple column
The methodology of antenna modelling for multiple columns follows the same procedure with that for single column in Section 5.4.4.1.4. 

The signals at all elements are defined as
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The complex output of the array system at far field becomes
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where 
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 denotes the complex gain of the radiation element of m-th column and the n-th row, together with the phase shift due to array placement, expressed as
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Then the radiation pattern of the antenna array is the mean output power which can be obtained by taking the conditional expectation over 
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and R is the array correlation matrix defined by
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Elements of this matrix denote the correlation between signals in the various transceiver paths. For example, 
[image: image77.wmf])
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denotes the correlation between the signals in the {i-th column, j-th row} and the {k-th column, t-th row} transceiver paths, assuming that the fast fading between antenna elements is spatially correlated.
For simplicity but still having the correlation sufficiently modelled in the coexistence study, it is proposed to assume the same correlation level 
[image: image78.wmf]r

, where 
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 is a value between 0 and 1, between signals in transceiver paths, or
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Note that uniform correlation may be an over-simplification of an active array implementation. When multiple sub-arrays are within the antenna elements it is possible they have different correlation levels. The modelling of this effect is FFS.

It is clear that 
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where U is the all-1 matrix and I is the unit matrix with 1 on the diagonal elements only. The radiation pattern is simplified as
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When 
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, the correlation matrix 
[image: image84.wmf]R

 is an all-1 matrix 
[image: image85.wmf]U

, and the radiation pattern is the same as a passive antenna.
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When 
[image: image87.wmf]0
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r

, the correlation matrix 
[image: image88.wmf]R

 is the unit matrix I with 1 on the diagonal elements and the radiation pattern is the same as the radiation element, or the antenna shows no array gain for uncorrelated inputs.
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5.4.4.2
Summarized functions and parameters 
The parameters for the array antenna model are defined in Table 5.4.4.2-1 and Table 5.4.4.2-2 below:
Table 5.4.4.2-1 Element pattern 

	Horizontal Radiation Pattern 
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	Front-to-back ratio
	Am=30 dB

	Vertical Pattern  method
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	Side Lobe lower level
	
SLAv=30 dB

	Element Pattern 
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	Element Gain
	GE,max=8 dBi *

	NOTE: For a type A10 antenna according to Table 5.4.4.2.1-1 8 dBi corresponds to 18 dBi array gain. 


Table 5.4.4.2-2 Composite array pattern for single column
	Configuration
	Single column (N-elements)

	Composite Array radiation pattern in dB 
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the super position vector is given by
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the weighting is given by
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	Active array loss
	0 dB

	Additional parameters are provided for antenna type A10 in Table 5.4.4.2.1-1



Table 5.4.4.2-3 Composite array pattern for multiple column
	Configuration
	Multiple columns (NVxNH elements)

	Composite Array radiation pattern in dB 
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the super position vector is given by
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the weighting is given by
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	Active array loss
	0 dB

	Additional parameters are provided for antenna type A10 in Table 5.4.4.2.1-1



5.4.4.2.1
Typical array antenna parameters
Table 5.4.4.2.1-1 Parameter for typical passive antenna types

	Antenna type
	A1
	A5
	A10
	A15
	B5
	B10
	B15
	D5
	D10
	D15

	No of radiation elements
	1
	5
	10
	15
	5
	10
	15
	5
	10
	15

	No of columns
	1
	1
	1
	1
	2
	2
	2
	4
	4
	4

	Max array gain for a single column / dBi
	8.7
	15
	18
	19.5
	14.5
	17
	18.5
	14.5
	17
	18.5

	Max antenna gain / dBi
	8.7
	15
	18
	19.5
	17
	19.5
	21
	20
	22.5
	24

	Vertical radiating element spacing d/ 
	-
	0.9
	0.9
	0.9
	0.9
	0.9
	0.9
	0.9
	0.9
	0.9

	Horizontal radiating element spacing d/
	-
	-
	-
	-
	0.6
	0.6
	0.6
	0.5
	0.5
	0.5

	Vertical 3dB bandwidth of single element / deg
	65
	65
	65
	65
	65
	65
	65
	65
	65
	65

	Horizontal 3dB bandwidth of single element / deg
	65
	65
	65
	65
	80
	80
	80
	80
	80
	80

	Losses of cable network / dB
	0.5
	0.8
	1.0
	1.2
	0.8
	1.0
	1.2
	0.8
	1.0
	1.2


Note: For single column AAS antenna, to calculate the gain of an active antenna the losses of the cable network has to be added to the max gain. 
 

 AAS Max antenna gain = passive Max antenna gain + Losses of cable network
 [The end of text proposal]
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