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A standard SCME model is connected to an isotropic environment through a set of relay
antennas. The isotropic environment is described in terms of a collection of plane-wave
states. The spatial correlation inherent in the channel model is explained. The combination
of the SCME models with the 3D isotropic environment produces a 3D channel model with
challenging spatial and temporal characteristics.

2 Background

SCME UMa and UMi are specified in [1] for testing MIMO devices. These models employ a
2D geometry with signals emerging from a number of clusters located on a ring surrounding
the device under test (DUT) [1]. A wide range of Doppler characteristics and power-delay
profiles ensure that that challenging channel conditions can be created. Testing with less
stressful channel models will not always show the difference in performance between devices.
Therefore, it is beneficial to keep the temporal characteristics of SCME models even when
one deviates from the 2D test configuration. The isotropic environment represents a very
attractive 3D test configuration where at any given instant the DUT sees signals from a set
of discrete directions distributed over a sphere. At the next instant, the amplitudes and
phases of these signals (plane waves) have changed. Isotropy is achieved after the DUT has
seen a series of such plane-wave states. The reverberation chamber [2] is the most common
tool for implementing an isotropic test environment, but this contribution explains how the
isotropic environment can be created (i) for simulation purposes and (ii) experimentally in
an anechoic chamber.

The isotropic environment to be described in this contribution has been used to compute
capacity curves [3]-[8], which subsequently have been shown to agree with experimental
results obtained with a reverberation chamber [9)].
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The isotropic environment has been introduced by Hill [2, Sec. 7.1] and by De Doncker et al.
[10]. These references prove a number of theorems that hold for antennas placed in isotropic
environments. For example, it is shown that the correlation between two antenna outputs
in an isotropic environment is exactly the same as the classical definition [10].

The purpose of the present section is to define a particular isotropic environment with
sufficient detail to allow someone skilled in the areas of electromagnetics and antennas to
(i) perform MIMO simulations with antennas in an isotropic environment, and (ii) create an
isotropic environment experimentally in an anechoic chamber. The isotropic environments
in reverberation chambers can be described in terms of cavity modes [11], [8].

Specifically, in this section we shall explicitly define a set of plane-wave states with evenly
distributed plane-wave propagation directions [3]-[7] that collectively creates an isotropic en-
vironment. In Section 6 we employ this isotropic environment in conjunction with an SCME
channel model to obtain a new channel model that contains the temporal characteristic of
the SCME channel model and the spatial characteristics of an isotropic environment.

Consider P plane waves propagating in a set of fixed directions given in spherical coor-
dinates by (0,, ¢,) with p = 1,2,3,..., P; see Figure 1. The directions of propagation are
roughly evenly distributed over the sphere. The spherical coordinates and unit vectors are
introduced in the Appendix.

Plane-wave propagation direction

Figure 1: A selection of points (6,,¢,), p = 1,2, ..., P evenly distributed on the unit sphere.
FEach point defines a direction of propagation for two plane waves. One plane wave 1is
O0—polarized, the other is ¢—polarized.

The directions of propagation are on constant—6 rings with the number of points on each
ring dependent on €. In particular, the top and bottom rings § = 0 and # = 7 consist of just
one point each. The following algorithm generates such a collection of evenly-distributed
points on a sphere. Start by selecting the number of constant—# rings Ny. According to [§],
one can choose Ny = N + 2 where N is given by (17) in the Appendix. Then in Matlab
notation the following values of 6 will come into play: 6§ = linspace (0, pi, Ny). For each of
these values of 0, let ¢ = linspace (0,2 * pi,round (2 x (sin (#) x Ny + 1))) and remove the
double end point by ¢ = ¢(1 : end — 1).

Two plane waves are incoming from in each of the directions (6,,¢,). One of them




[image: image3.png]is #—polarized with amplitude aﬁ,j), the other is ¢—polarized with amplitude @(,j), where
7 =1,2,..,J is the state index for the isotropic environment. For a particular j, the incident
electric field is thus given by

P
E(J — Z [Q(J pe—zkrs + 5(] ¢p€—z‘ki~pvr (1)

where k is the wave number, Ej is a constant with dimension volts/meter, and &,, 6, and
¢, are the spherical unit vectors evaluated at (0, ¢) = (6,, ¢,).
The plane-wave amplitudes aﬁ,j) and ﬁl(,j) are modeled by independent random complex

variables with uniformly distributed magnitude and phase. In Matlab aﬁ,j) and ﬁl(,j) can be
computed for each j using the rand and exp functions as

aé,j) “="rand(1, P). *x exp (2 * pi *i* rand(1, P)) (2)
and .
5}(}]) “_» rand(l, P). * eXp (2 * ploxix rand(1> P)) (3)

These computations are repeated for each j = 1,2, ..., J.
The output of an antenna illuminated by the plane-wave field (1) of the isotropic envi-
ronment in state j is [12], [13]

P
v = B, Z [a;j)ép - R0, ¢p) + @(,j)qu " R(0p, &) (4)

p=1

where R(6,, ¢,) is the plane-wave receiving characteristic of the antenna evaluated in the
direction (6,, ¢,). We emphasize that R(6,, ¢,) contains any phase factor due to offset from
the origin. For example, R(6,,$,) = 0,Lsinf, e *roosépsinty for o 7 directed Hertzian
dipole located at z¢x, where L is a length. The Appendix expresses the plane-wave receiving
characteristic in terms of the far-field pattern of the antenna. Moreover, the Appendix shows
how R(6, ¢) can be evaluated at arbitrary points (6, ¢) from sampled values of the measured
complex antenna pattern.

4 Evaluating the quality of the isotropic environment

This section shows how one can determine if a given set of field distributions combine to create
an isotropic environment. That is, how evenly distributed are the directions of propagation
and polarizations of the incoming waves at the location of the DUT. With the isotropy test
developed by the international standards committee (ICE) [14], field anisotropy coefficients
measure the bias of the average direction of polarization of the electric field. The bias is
computed by comparing three components of the electric field obtained from dipole-antenna
measurements. The degree of isotropy of an actual environment is determined by comparing
the observed and ideal (known from theory) distributions of the anisotropy coefficients.
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are required to compute the field anisotropy coefficients [14, Annex J|:
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where a and b denote the three orthogonal directions. The quantity P;(7) is the net input
power that illuminates the DUT, and j is the isotropy index. For the isotropic environment
in Section 3, P,(j) is a constant and a and b can be z, y, or z.

In addition to the three anisotropy coefficients defined by (5), the test in [14, Annex J]
also employs the total anisotropy coefficient:

A () = Wiy@ +AZ.(j) + A2.()

: . ©

For a perfect isotropic environment, A,;(7) is uniformly distributed between —1 and 1, and
Asot(7) is nonuniformly distributed from 0 to 1 (its precise distribution can be obtained
straightforwardly by simulation) as shown in Figure 2. Pages 97 and 98 of [14] show plots
of anisotropy coefficients for environments that exhibit a high degree of isotropy and a low
degree of isotropy.
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Figure 2: The cumulative distribution functions for the anisotropy coefficients Auw(j) (left
plot) and Aw(j) (Tight plot) in a perfect isotropic environment.

5 Spatial correlation in an isotropic environment

Consider two receiving antennas, possibly mounted on the same DUT, with plane-wave
receiving characteristics R1(6, ) and Ro(6,¢). The classical definition of the correlation p
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In accordance with the Appendix, the correlation (7) can be computed by inserting Fourier
series expansions for R (6, ¢) and R4(0, ¢) with Fourier coefficients obtained from sampled
values.

It was shown by De Doncker et al. [10] that the correlation between the outputs V; and
V4 in the isotropic environment is equal to the classical correlation (7):

p = corr; (7, V;7) (8)

where the correlation i 1s Computed with respect to the isotropy state index j. In simulations
one would compute V and V2 by inserting the receiving characteristics R1(f,¢) and
R.(60, ¢) for the two antenna ports into (4).

5.1 CTIA reference antennas

To expedite the baseline between laboratories participants of CTIA LTE round robin, a set
of MIMO 2x2 reference antennas has been developed [15]. The isotropic correlation was
computed from (4) and (8) with the measured complex antenna patterns of the reference
antennas. The isotropic environment employed P = 180 evenly distributed plane-wave
directions of propagation as defined in Section 3. Table 1 shows the resulting correlations for
three antennas: (i) Good antenna with low correlation, (ii) Nominal antenna with average
correlation, and (iii) Bad antenna with high correlation. The table validates the general
theorem by De Doncker et al. [10] in (8). These results have also been verified experimentally
in a reverberation chamber at NIST [3]-[7].

Good antenna | Nominal antenna Bad antenna
Classical formula (7) —0.0381 + 0.00097 | —0.5749 — 0.00547 | —0.9042 4 0.01727
Isotropic simulation (4), (8) | —0.0367 — 0.0020¢ | —0.5740 — 0.0040¢ | —0.9066 + 0.0130:

Table 1: Correlations computed from the classical formula (7) and from the isotropic simula-
tion formula (8) with P = 180 plane-wave directions of propagation. The complex radiation
patterns of the reference antennas were measured at 751 MHz.

6 Isotropic channel model based on SCME

Figure 3 shows the schematic for the isotropic channel model based on an SCME model.
Specifically, the channel model to be described here has the temporal characteristics of the
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Figure 3: Schematic of isotropic channel model based on SCME. A base station broadcasts
into an SCME model environment. A set of relay antennas act as the output of the SCME
model. The relay antennas broadcast into an isotropic environment in which the DUT is
placed.

Input

SCME model and is spatially isotropic. The full specification for the SCME model can be
found in [1].

The SCME channel model is connected to the isotropic test environment through a set of
relay antennas. On the input side, the SCME channel model is connected to a base station.
On the output side, the SCME model is connected to a set of relay antennas that are typically
assumed uncorrelated. With the base station antennas and the relay antennas selected, the
SCME model specification [1] allows us to compute the output of the relay antennas from the
base-station input signals. The fast fading of the SCME model is interrupted with updated
channel coefficients (“drops”) in the usual way.

We let the input port index be denoted s, with s = 1, ..., S, where .S is the number of base
station ports. Similarly, the relay antenna index is denoted by u, with u = 1,..., U, where U
us the number of relay antennas. In Figure 3 we have S = 2 and U = 4. Then the SCME
model produces a channel matrix h{°CM¥)(t), where ¢ is time. Specifically, h{SCM5)(t) is the
output of relay antenna ug when a unit-amplitude input signal is applied to input port sg
and all other input ports are idle. We let V,("*/%%)(¢) denote the output of relay antenna u for
the given excitation under consideration.

The isotropic channel model based on SCME operates with the isotropic environment
locked in a particular state for an extended period of time. In other words, the SCME model
is run over an extended period of time for each of the isotropic states j = 1,2,..,J. Hence,
for given relay antenna outputs V") (¢), we need to compute the DUT antenna outputs
for each state j separately.

Let the output ports of the DUT be indexed by g, with ¢ = 1,2,...,G. Moreover, let
V;?UT) (t) denote the output of DUT port g when the relay antenna outputs are V,("¢/¥)(¢)
and the isotropic environment is in state j.

Each relay antenna excites the plane waves of the isotropic environment differently.
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where Dy is a constant with dimension meter, and a;j’“) and ﬁl(,j’“) can be determined for
each u from (2) and (3). The formula (9) explains how to set up an isotropic environment
in an anechoic chamber with dipole probe antennas mounted on a sphere surrounding the
DUT.

With R, (¢, ¢) denoting the plane-wave receiving characteristic for DUT port g, we find
from (9) that

1 SA ) g iu) rela
Vg(,JDUT) (t) = H Z Z [O‘;(;L )Op ' Rg(em ¢p) + @(;J’ )¢p ' Rg(epa ¢p) Vu( tay) (t) (10)

0 y=1 p=1

which provides the information needed to perform simulations that take into account the
measured complex antenna patterns of the DUT.

Since V. ("'¥)(t) is determined by the SCME model, (10) completes the state by state
description of the isotropic channel model based on SCME. Finally, to ensure that isotropy
is achieved, we must repeat the experiment for all states j = 1,2, ..., J.

7 Summary

We can summarize the geometrical isotropic channel model with SCME temporal character-
istics as follows.

e First, determine the plane-wave directions (6, ¢,) with p = 1,2,..., P to be used in
the isotropic environment. For a given DUT, start by computing N from (17) in
the Appendix. Then let Ny = N + 2 and consider the following 6 values (in Mat-
lab notation): ¢ = linspace (0,pi, Ny). For each of these values of 6, let ¢ =
linspace (0,2 * pi,round (2 * (sin (0) * Ny + 1))) and remove the double end point
by ¢ = ¢(1 : end — 1). Finally, number the (6, ¢) points thus obtained using index p.

e Second, determine the random variables al(,j’“) and ﬁl(,j’“), which determine the ampli-
tudes of the 6 and ¢ components of the incident plane-wave field in (9) and (10). These
variables are determined for each state j of the isotropic environment and each relay
antenna u from the formula (in Matlab notation): rand(1, P).xexp (2«pixixrand(1, P)).

e Third, determine the output of the relay antennas V(") (¢). This task is performed by
using the expression [1, page 24] for the channel coefficients of the SCME model under
consideration. The computation of V(") () is performed exactly as in a standard
SCME channel model simulation.

e Fourth, use (10) to compute the DUT output for each state j of the isotropic environ-
ment.

e Finally, one averages test results over all J isotropic states.
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In this appendix we introduce the plane-wave receiving characteristic and far-field pattern
of an arbitrary DUT-mounted antenna. (The term “pattern” will be used to refer to both
the plane-wave receiving characteristic and to the far-field antenna pattern.) A spherical
expansion determines the spatial sampling rate required to “capture” the pattern of the
antenna and provides a Fourier series expansion useful for computing any quantity involving
the pattern. The standard spherical coordinates (r, 6, ¢) with unit vectors given by

Figure 4: Spherical coordinates.

r(0,¢) =xcos¢sinf + ysin¢gsin @ + zcos 6 (11)
9(0,¢) =xcosf cos¢p + ycosf sing — zsinb (12)

and )
¢(0,¢) = —xsin¢ + y cos ¢ (13)

will be used throughout. Here, the unit vectors for the rectangular coordinates (z,y, z) are
x, y, and z. Note that r(6,¢) with 0 <0 < 7 and 0 < ¢ < 27 covers the unit sphere once.
Figure 4 shows the spherical coordinates.

The DUT with a mounted antenna is shown in Figure 5 inside the minimum sphere with
radius R,,;,, defined such that the maximum value of the coordinate r for all points on the
DUT equals R,,;,. Note that R,,;, depends not only on the size of the DUT but also on
its location with respect to the coordinate system. For example, a Hertzian dipole located
at ro has R, = |ro| despite the fact that its physical extent is vanishing. Also, even if
the physical dimension of a DUT-mounted antenna is much smaller than the dimensions of
the DUT (as in Figure 5), the antenna interacts with the DUT and therefore it is the entire
DUT size that must be used when computing R,,;,.

The plane-wave receiving characteristic is defined as follows. Assume that the incident
plane wave E(r) = E eihkoT with propagation direction ko illuminates the DUT. The direc-
tion of propagation is ko = —1(0y, ¢o), and the Constant vector Eq satisfies Eg - ko = 0. With
this notation, the incident plane wave “comes” from the direction (6y, ¢g). For example, if
0y = 0 the plane wave is E(r) = Ege~"** and propagates in the direction of the negative
z axis. When the DUT is illuminated by this plane-wave field, its output is by definition
V = R0y, p0) - Eg, where R(0y, ¢o) is the plane-wave receiving characteristic satisfying

ko - R0, ¢o) = 0
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Figure 5: The DUT with mounted antenna contained in the minimum sphere of radius R,,;,.

If the DUT-mounted antenna satisfies reciprocity, its plane-wave receiving characteristic
can be expressed in terms of its normalized far-field pattern F(6, ¢) as [13, Eq.(6.60)]*

‘ L}-o(@o,%) (14)

R (0o, do) = ,|—

where i and € are the free-space permeability and permittivity, respectively. Moreover,
k = w,/pe is the wavenumber and Y, is the characteristic admittance of the propagating
mode of a wave-guide feed assumed attached to the DUT antenna; see [13, Ch. 6]. In
general, if the antenna is not reciprocal, the receiving characteristic can be related to the
pattern of an adjoint antenna [12].

The electric far field of the DUT, when it is fed by an input voltage-amplitude Vj, is [13,
Eq. (6.35)]?

ikr
E(r,0,0) ~ VoFo(0, 6)—. (15)

The far-field pattern F(6y, ¢y) determines the far field in the direction (0, ¢y) whereas
R (0o, po) determines the output due to a plane wave “coming in” from the direction (6y, ¢).
Hence, this incident plane wave propagates in the direction (7 —6y, 7+ ¢p). Also, the normal-
ized far-field pattern Fy(6, ¢) is dimensionless and the plane-wave receiving characteristic
R(0,¢) is a length.

These statements fully define the plane-wave receiving characteristic for any propagating
plane wave that may illuminate the DUT. If the source of the incident field is close to the

!The spherical angles determining the plane-wave directions of propagation in [13] are different from those
used in the present paper.

2The non-normalized far-field pattern F (6, ¢) is defined in [13, eq. (3.31)] in terms of the electric field
through the limit F(0,¢) = lim,_, ., r e **"E(r,0,¢). The normalized far-field pattern Fy(6,¢) is in turn
defined by Vo Fo (0, ¢) = F(0, ¢), where Vj is the input voltage amplitude of the signal that feeds the antenna.
Note that the symbol “~” in (15) means “asymptotically equal to” in the limit r — oo.
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waves [13, Chs. 3 and 6]. However, in this paper we consider only sources that are at least
a few wavelengths away from the DUT so that evanescent waves are negligible.

Using (14) in conjunction with standard spherical-wave theory [16], [17] shows that the
receiving characteristic can be expressed in terms of the transverse vector-wave functions
M,,,, and N,,,,, as

.6)= > _Z A Mo (0,0) + B N (0,6)] (16)

where A,,, and B,,, are spherical expansion coefficients satisfying A,,, = 0 and B,,, = 0
when |m| > n. The truncation number N is determined from the radius of the minimum
sphere as

N = int(k:Rmm + ”y(k‘Rmm)l/3> (17)
where (31 5)2/3
—31In
V= (18)

and £ is the desired relative accuracy [18, Sec. 3.4.2]. Moreover, “In” is the natural logarithm
and “int” denotes the integral part. The formula (17) is especially useful for small sources
where the second term is on the same order of magnitude as the first term.?

The transverse vector-wave functions can be expressed in terms of the spherical harmonic
Yom (0, ¢) [17, p. 99] as [17, pp. 742-746]

>

' o
Mo (6, 6) = § —1Xom0:0) g gV (6,0) (19)
n(n+1) siné n(n +1)

and N,,,,,(0,¢) =t x M,,,,,(0, #). The orthogonality relations [17] for the transverse vector-
wave functions give the following well-known expressions for the spherical expansion coeffi-
cients A,,, and B,,,

2T W
[l
and .
/]

where * indicates complex conjugation. The formula (16) makes it possible to compute the
plane-wave receiving characteristic in any direction from the spherical expansion coefficients
A and By,,. However, in this paper we shall use (16) to derive Fourier expansions and
sampling theorems that are useful for computing quantities like correlations that involve the
the plane-wave receiving characteristic.

3In older literature the following truncation formula is often used with the second term left unspecified:
“N = int(kRin + n1) where n; is a small integer.”




[image: image11.png]The expressions for the transverse vector-wave functions M,,,,(6, ¢) and N,,,,,(6, ¢) show
that the 6 and ¢ components of R(6,¢) = Ry(0, ¢)0 + Ry (6 gb)qb (16) have the Fourier

series? N
Ro(0, ¢) = Z Z D), e e’ (22)
—N m=—N

and

Z Z D zm¢ qu (23)
—N m=—N

where DY and D¢, are Fourier coefficients. The Fourier expansions (22) and (23) define
functions that are 2wr—periodic in both 6 and ¢. Hence, the Fourier coefficients cannot be
determined from the sampling theorem for periodic spatially bandlimited functions when
R (0, ¢) is known only over the standard sphere 0 < 0 < 7, 0 < ¢ < 27. We shall overcome
this problem by continuing R (6, ¢) to the interval 0 < § < 27 (see [19], [20], and [21, pp.
111-113, 140-144]).

Since t(0,¢) = t(2r — 6, ¢ + 7), the two points (0, ¢) and (2 — 0, ¢ + m) correspond
to the same point in space. Moreover, since the tangential spherical unit vectors satisfy
0(0,0) = —-0121 — 0,0+ ) and (0, 9) = —p(2m — 0, ¢ + 1), we can analytically continue
R (0, ¢) into a 2r—periodic in both 6 and ¢ by use of

R0(0> ¢) = _RO(QT‘- - 07 ¢ + 7T) (24)

and
R¢(9,¢) = —R¢(27T — 9,¢+7T) (25)

One can show that the conditions (24) and (25) imply that the Fourier coefficients satisfy
D = (—-1)mtDe . and DY = (— HmHpe

Assume that Ry(6,¢) and R4(0, ¢) are known over the standard sphere 0 < 6 < T,
0<¢p<2ratf=(t—-—1)A0,t=1,...Ngand ¢ = (p — 1)A¢, p = 1,..., N4, where the
sample rates are A = 7/(Ng—1) and A¢ = 27 /Ny, with Ny > N+2 and N, > 2N+1. Then
the Fourier coefficients can be computed from the sampling theorem for periodic spatially
bandlimited functions in conjunction with (24) and (25) as [21], [22, Sec. IV]

1 ,
DO —im(p—1)A¢ . . —iq(t—1)A6
o —N¢(2N9 —3 Z e {Z Ro([t — 1]A0, [p — 1]Ag) e

t=1

Ng—1
H(=1)™ N Ry([t — 1]AG, [p — 1]Ag) et 9} (26)
=2
and
D¢ — ; % e~ im(p—1)A¢ %%R ([t _ 1]A9 [ _ 1]A¢) e ia(t=1)A0
qgm — N¢(2N9 — 2) ~ (o] y [P
Ng—1
H(=1)™ ST Ry(t — 1)A0, [p — 1]Ag) et 9} (27)
=2

4The expressions [17, p. 98] for the associated Legendre function show that both the derivative
2Y,m (0, ¢) and the fraction mY,m, (0, ¢)/siné can be expanded in terms of ei™? ¢4/ with ¢ = —n, ..., n.




[image: image12.png]Of course, (26) and (27) hold only for functions that satisfy (24) and (25). We summarize
the results (which also hold for the antenna pattern Fy (6, ¢)) as follows.

e The plane-wave receiving characteristic R (6, ¢) should be sampled over the sphere
0<6<mand0 < ¢ < 27 at a rate of at least A0 = Ap = 7/(N +1), where N, given
by (17), depends on frequency, physical DUT size, and DUT location.

e The plane-wave receiving characteristic R (6, ¢) can be expressed in terms of the Fourier
series (22) and (23) with Fourier coefficients computed through (26) and (27) from
sampled values of R (6, ¢).

e Integrals of the form

2
I= 0/ 0/ U0, 6) - R(0, 6) sinf d dob (28)

where U(#, ¢) is a known function occur in many places. For example, the expressions
(20) and (21) for the spherical expansion coefficients have this form. Such integrals
can be computed accurately by inserting the Fourier expansions (22) and (23) for
R(0,¢). One can often compute the contribution form each Fourier term explicitly.
Alternatively, by use of the Fourier series one can re-sample R (6, ¢) to a finer grid and
then compute / through numerical integration.

e In contrast, brute-force approximations of the form (with the original sampling rate
retained)

=SS Ut = 120, [p— 11A6) - Rt — A6, [p— 1AG) sin([t — JAG)AG A (29)

t=1 p=1

are often inaccurate, especially when the sampling is sparse (the antenna is electri-
cally small). The lack of accuracy is caused by the fact that the integral over 6 does
not involve a periodic spatially bandlimited function, so the trapezoidal rule is not
guaranteed to work well [21, pp. 111-113, 140-144, 372].




[image: image13.png]References

1]

9]
[10]

[11]

[12]

[13]

[14]

3rd Generation Partnership Project, Technical Specification Group Radio Access Net-
work, “Spatial channel model for Multiple Input Multiple Output (MIMO) simula-
tions,” 8GPP TR 25.996 V8.0.0, (2008-12).

D.A. Hill, Electromagnetic Fields in Cavities, New Jersey: John Wiley & Sons, 2009.

R.J. Pirkl and K.A. Remley, “A Study of Channel Capacity in 2-D and 3-D Isotropic
Environments,” CTIA Contribution MOSG110805, August 2011.

R.J. Pirkl and K.A. Remley, “A Study of Channel Capacity in 2-D and 3-D Isotropic
Environments: Comparison Between MIMO Reference Antennas,” CTIA Contribution
MOSG110906, September 2011.

R.J. Pirkl and K.A. Remley, “A Study of Channel Capacity in 2-D and 3-D Isotropic
Environments: Effect of Gain Imbalance,” CTIA Contribution MOSG111008, October
2011.

R.J. Pirkl, E. Engvall, and K.A. Remley, “Measurements of Correlation Coeffi-
cients and Capacity CDFs for MIMO Reference Antennas,” CTIA Contribution
MOSG111009, October 2011.

R.J. Pirkl and K.A. Remley, “Dependence of Antenna Orientation on Correlation,
Average Gain, and Capacity in 2-D Isotropic Environments,” CTIA Contribution
MOSG111010, October 2011.

T.B. Hansen, “Correlation and capacity calculations with reference antennas in an

isotropic environment,” International Journal of Antennas and Propagation, Volume
2012, Article ID 5404649.

Azimuth Systems, “Capacity experiments with reference antennas in isotropic envi-
ronment,” CTIA Contribution MOSG120518, May 2012.

P. De Doncker and R. Meys, “Statistical response of antennas under uncorrelated plane
wave spectrum illumination,” Electromagnetics, Vol 24, pp. 409-423, 2004.

K. Rosengren and P.S. Kildal, “Study of distributed modes and plane waves in re-
verberation chambers for the characterization of antennas in multipath environment,”
Microwave and Optical Technology Letters, Vol. 30, No. 6, pp. 386-391, September 20,
2001.

D.M. Kerns, Plane-Wave Scattering-Matrixz Theory of Antennas and Antenna-Antenna
Interactions, NBS Monograph 162, Washington, DC: U.S. Government Printing Office,
1981.

T.B. Hansen and A.D. Yaghjian, Plane-Wave Theory of Time-Domain Fields, New
York: TEEE Press, 1999.

International Standard, Testing and measurement techniques—Reverberation chamber
test methods, IEC 61000-4-21, Edition 2.0, 2011-01.




[image: image14.png][15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[. Szini, “Reference Antenna Proposal for MIMO OTA,” CTIA Contribution
MOSG110504R1, May 2011.

W.W. Hansen, “A new type of expansion in radiation problems,” Physical Review, Vol.
47, pp. 139-143, January 1935.

J.D. Jackson, Classical Electrodynamics, 2nd edition, New York: John Wiley and Sons,
1975.

W.C. Chew, J.M. Jin, E. Michielssen, and J. Song, eds, Fast and Efficient Algorithms
in Computational Electromagnetics, Boston: Artech House, 2006.

L.J. Ricardi and M.L. Burrows, “A recurrence technique for expanding a function in
spherical harmonics,” IEEE Trans. on Comput., Vol. 21, June 1972, pp.583-585.

P.F. Wacker, Non-planar near-field measurements: spherical scanning, NBS Internal
Report, 75-809, 1975.

J.E. Hansen, Ed., J. Hald, F. Jensen, and F.H. Larsen, Spherical Near-Field Antenna
Measurements, London: Peter Peregrinus, 1988.

T.B. Hansen, “Formulation of spherical near-field scanning for time-domain electro-
magnetic fields,” IEEE Trans. Antennas Propagat., vol. 45, pp. 620-630, April 1997.




14

