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1
Introduction
How to verify UE’s correct implementation on Behaviour B for quasi-collated antennas was widely discussed in recently RAN4 meetings. In last RAN4 meeting, a way forward [1] was agreed to further study the range of timing offset, and make a final decision  in RAN4#66 meeting:
· Proposal1: [-0.5,3] (NSN. In case of CRS colocation with DM-RSs the range used for simulations can be extended)

· Proposal2: [-0.5, 2.4] (Ericsson/ST-E)

· Proposal3: [-0.5, 2] (Samsung, Renesas, Intel, Broadcom)

· Proposal 4: [-1, 1.5] (Qualcomm, Intel, Broadcom)
In this contribution, we firstly summarize and analyze several methods for timing offset corrections which were discussed in RAN4 and then evaluate UE performance with different timing offset correction methods.
2 Analysis
Based on the agreed WF in [1], on one hand, there will be no additional timing alignment and frequency error core requirements for BS. On the other hand, to verify UE behaviour B performance, RAN4 should define certain test cases with typical timing offset and frequency offset between different transmission points in CoMP scenario. Regarding how to decide which are typical timing offset and frequency offset values, the principle below can be followed:

(1) If UE implements correct Behavior B, the performance degradation caused by timing/frequency offset is acceptable, e.g. < 1.0dB~2.0dB.

(2) If UE doesn’t implement Behavior B, such bad UE implementation should fail in the design test case.

However, the maximum timing/frequency offsets which Rel-11 UE under Behaviour B could cope with are highly dependent on which kind of timing/frequency offset correction algorithms is implemented by UE. Thus, from this point of view, RAN4 need to align a baseline UE implementation firstly.
2.1 Timing offset correction methods
Regarding timing offset correction, there are several implementation strategy depending on e.g. how to select FFT timing boundary, e.g. post FFT processing. Different implementation strategy will result in different performance degradation and different UE implementation complexity. Several options for timing offset correction discussed in RAN4 are summarized below.

Option 1: FFT timing is tracking on CRS boundary and NO phase correction in frequency domain after FFT for DM-RS/CSI-RS/PDSCH. 

This is behaviour A and may be legacy Rel-8/Rel-9/Rel-10 UE implementation. Also, this option could be considered as a bad implementation for behaviour B and should be ruled out by RAN4 test case.

Option 2: FFT timing is tracking on CRS boundary and do post FFT phase correction in frequency domain based on the estimated timing offset for PDSCH.

As shown in the figure below, this UE implementation will suffer asymmetric performance loss for positive timing offset and negative timing offset. With post-FFT correction in option 2, UE could effectively reduce the performance degradation caused by positive timing offset. However, the performance degradation is sensitive to negative timing offset due to the un-avoidable ISI.

[image: image1.emf]N OFDM Symbol

CP

(N-1) OFDM Symbol

CP CRS RE

N+1 OFDM Symbol

CP

N OFDM Symbol

CP

(N-1) OFDM Symbol

CP

Positive Delay Case

PDSCH RE

N+1 OFDM Symbol

CP

N OFDM Symbol CP (N-1) OFDM Symbol CP N+1 OFDM Symbol CP

FFT Timing

Tracking On CRS

Negative Delay Case

PDSCH RE

Positive Delay: No ISI thanks to CP. 

However, the actual CP length is 

reduced by timing offset

Negative Delay: ISI is always 

introduced because the 

orthogonality is destroied.

Option 2


Figure 2-1: timing offset compensation option2
Option 3: To reduce the performance degradation caused by negative timing offset, FFT timing is tracking on CRS boundary + a fixed timing shift (e.g. 1us) and do post FFT phase correction in frequency domain based on the estimated timing offset for both PDCCH and PDSCH.

Option 3 is shown as the figured below. To reduce the asymmetric performance degradation caused by positive timing offset and negative timing offset, the FFT timing boundary (i.e. FFT window) is shifted ahead with a fixed value (e.g. 1 us) in UE implementation. Besides the FFT timing adjustment, the same post FFT phase correction as option 2 is also applied.

Option 3 can only tolerate the negative timing offset which is smaller than the fixed timing shift. 
Another method is to dynamic adjust the FFT timing boundary tracking on the first receiving path between CRS and several CSI-RS resources in RRC signaling for QCL as described in option 4.
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Figure 2-2: timing offset compensation option3
Option 4: FFT timing tracking on the first receiving path between all synch resources, and do post FFT phase correction in frequency domain based on the estimated timing offset for both PDCCH and PDSCH 
This method firstly detects the first receiving path among CRS and several CSI-RS resources in RRC signaling for QCL. Then FFT timing is tracking on the first receiving path, and applying post-FFT timing offset correlation for both PDCCH and PDSCH regions with different timing offset values.
Option 4 ensure PDCCH and PDSCH always lag behind FFT timing window, so no ICI for PDCCH and PDSCH. However, performance loss is unavoidable due to further reduced CP since CP for PDCCH and PDSCH are consumed by timing offsets between the actual receiving timing of CRS, target CSI-RS resource and initial first receiving path.
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Option 3 and option 4 could significantly reduce the performance degradation caused by negative timing offset. However, due to further reduced CP length by FFT timing adjustment, the performance degradation of positive timing offset is more serious. 
To further improve the performance, the FFT timing boundary can be dynamic adjusted between PDCCH and PDSCH regions in the same sub-frame. 
Option 5: FFT timing boundary is dynamically changed for control symbols and PDSCH OFDM symbols within one TTI.
Because the quasi-collocated CSI-RS resource index is indicated in PDCCH DCI format, UE need to firstly decode PDCCH with CRS FFT timing boundary. Then, for the remaining PDSCH OFDM symbols, the associated CSI-RS FFT timing boundary will be used. 

With Option 5, it is expected there is almost no performance loss under both positive and negative timing offset.
For option 5 above, UE need to apply two FFT timing boundary for PDCCH and PDSCH OFDM symbols. From UE implementation point of view, the complexity of using two FFT timing boundary within one TTI is NOT acceptable. Thus, only option 2, option 3 and option4 are feasible from UE implementation point of view.
2.2 Simulation Results 
This section we evaluate the impact of timing offset with EVA5 channel model. Since higher MCSs are more sensitive to timing offset, 64QAM 3/4 and 16QAM 1/2 were selected for evaluation. In our simulation, CSI-RS resources are used for timing tracking. Since the estimation accuracy of timing offset is related to number of available CSI-RS samples, 10MHz and 1.4MHz channel BWs with full RB allocation are considered in our simulation as typical and worst cases. The time delay points are selected as [-1,-0.5, 0, 1, 2, 2.4, 3] to cover all the proposals in [1]. The results with ideal timing are also attached for each case as the reference. Ideal timing means no timing offset between different RS types, and UE tracking on CRS for synchronization.
Regarding timing offset correction methods, such options are evaluated:
· Option2: FFT timing tracking on CRS, post-FFT applied for PDSCH
· Option3: FFT timing tracking on CRS boundary + a fixed timing shift , post-FFT applied for both PDCCH and PDSCH
· Option 3a: fixed timing shift = 0.5us
· Option 3b: fixed timing shift = 1.0us
More detailed simulation assumptions and throughput curves with several cases are given in Annex.
Table 2-1 and table 2-2 show the performance degradation @70% relative throughput compared with ideal timing case for timing correction method option 2, option3a and option3b. 
Figure 2-1 shows the curves of root mean square errors of estimated timing offset with 2.0us and 2.4us timing offset under 1.4MHz and 10MHz channel BWs. 
Assuming 1.5dB is largest acceptable performance loss, Table 2-3 summarized the acceptable positive and negative timing offset under EVA channel for different timing offset correction methods.
Based on the simulation results, it is observed that,

· For Option 2

· Positive and negative timing offset has asymmetric performance degradation as expected. With only post-FFT phase correction, the ISI introduced by negative timing offset can’t be compensated. In case of 64QAM transmission, large performance loss is observed even with only -0.5us negative timing offset. 
· For positive timing offset, UE can tolerate 2.4us/2us positive timing offset for 10MHz and 1.4MHz channel BW separately.
· For Option 3 with fixed timing shift (0.5/1 us)
· Performance under negative timing offset is significantly improved. For 64QAM, with 0.5 us timing shift, UE can tolerate 0.5 us negative timing offset without obvious performance loss. With 1us timing shift, UE can tolerate 1us negative timing offset.
· For positive timing offset, UE can tolerate 2.4us/2us positive timing offset for 10MHz and 1.4MHz channel BW separately. Furthermore, with fixed timing shift, performance under positive timing offset is degraded compared to the option without timing shift due to CP is further consumed by this option. However, the performance loss is acceptable (up to 0.8dB) within 2.0us timing offset.
· For timing offset estimation accuracy based on CSI-RS:
· The root mean square of estimated timing offset under 1.4MHz channel BW is larger than 10MHz channel BW due to smaller CSI-RS samples in 1.4MHz. It’s consistent with the observation from demodulation performance. 
· The variance of estimated timing offset under 2.4us is huge compared to 2.0us case due to upper limits of timing offset which CSI-RS resource can cover. The density of CSI-RS resource limits the maximum timing offset which can be estimated via CSI-RS to +/- 2.67us. Over 2.67us aliasing is occurring which turn the estimated values to a totally contrary direction. For 10MHz, with larger CSI-RS samples, the estimation accuracy can be maintained when SNR is over 6dB even with 2.4us timing offset. For 1.4MHz, estimation method based on CSI-RS cannot catch 2.4us timing offset totally since aliasing happens due to smaller CSI-RS samples. It’s consistent with the observation from demodulation performance. Performance loss with 2.4us timing offset for both 16QAM and 64QAM under 1.4MHz channel BW are over 1.5dB and much larger than the cases with 2.0us timing offset with all the timing correction methods.
· For 3us timing offset, UE cannot track the timing offset at all since it’s over the upper limit which CSI-RS resource can cover.
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Figure 2-1: RMSE of estimated timing offset Vs. SNR
Table 2-1: Performance degradation @70% relative throughput (Option 2)

	Option 2
	16QAM 50RB
	64QAM 50RB
	16QAM 6RB
	64QAM 6RB

	-1.0us
	1.5
	INF
	1.1
	INF

	-0.5us
	0.7
	2.6
	0.2
	2.1

	+0.0us
	0.3
	0.0
	0.0
	0.3

	+1.0us
	0.4
	0.2
	0.2
	0.3

	+1.5us
	0.4
	0.3
	0.2
	0.4

	+2.0us
	0.5
	0.4
	0.2
	0.4

	2.4us
	0.5
	0.5
	1.6
	1.5

	3.0us
	INF
	INF
	INF
	INF


Table 2-2: Performance degradation @70% relative throughput (Option 3a and Option 3b)

	Timing offset
	Option 3a
	Option 3b

	
	16QAM 50RB
	64QAM 50RB
	16QAM 6RB
	64QAM 6RB
	16QAM 50RB
	64QAM 50RB
	16QAM 6RB
	64QAM 6RB

	-1.0us
	0.7
	2.6
	0.2
	2.1
	0.3
	0.1
	0.0
	0.3

	-0.5us
	0.3
	0.1
	0.0
	0.3
	0.4
	0.2
	0.2
	0.3

	+0.0us
	0.4
	0.2
	0.2
	0.3
	0.4
	0.3
	0.2
	0.4

	+1.0us
	0.4
	0.3
	0.2
	0.4
	0.5
	0.4
	0.2
	0.4

	+1.5 us
	0.5
	0.4
	0.2
	0.4
	0.6
	0.5
	0.4
	0.6

	+2.0us
	0.5
	0.5
	0.3
	0.5
	0.6
	0.6
	0.6
	0.7

	2.4us
	0.6
	0.6
	2.1
	1.8
	0.9
	0.8
	2.2
	4.1

	3.0us
	INF
	INF
	INF
	INF
	INF
	INF
	INF
	INF


Table 2-3: Acceptable timing offset assuming 1.5dB performance loss at 70% relative TP

	MCS     RB allocation
	16QAM 50RB
	64QAM 50RB
	16QAM 6RB
	64QAM 6RB

	Option 2
	[-0.5, +2.4]
	[+0, +2.4]
	[-1, +2]
	[+0, +2]

	Option 3a
	[-1, +2.4]
	[-0.5, +2.4]
	[-1, +2]
	[-0.5, +2]

	Option 3b
	[-1, +2.4]
	[-1, +2.4]
	[-1, +2]
	[-1, +2]


3 Conclusion

In this contribution, we summarize and analyze several options for timing offset correction discussed in RAN4. Assuming 1.5dB is largest acceptable performance loss,
1. With only post-FFT phase correction in frequency domain, it could tolerate up to 2us/2.4us positive timing offset for 10MHz and 1.4zMHz channel BW separately. However, it can’t tolerate any negative timing offset for 64QAM.
2. With fixed timing shift plus post-FFT phase correction, it can effectively improve performance with negative timing offset. UE can tolerate 0.5us or 1us negative timing offset with 0.5us or 1us fixed timing shift.
3. With adaptivecorrection FFT window adjustment based on the first receiving path, the performance is strongly dependent on the timing offset ranges between all synchronous resources in real network. correctionThe maximum tolerable negative timing offset is similar as previous option.
4. Table 3-1 summarizes the different receiver performance for timing offset proposals correctionin [1]. For 16QAM, all timing correction methods can support [-0.5~2]us timing offset. For 64QAM, it can support [-0.5, 2]us by either using fixed timing shift or adaptive FFT window adjustment based on the first receiving path.
Based on such observations, it is proposed that:
· Setting timing offset range as [-0.5, 2] us for test in order to keep freedom for UE implementation of timing tracking and compensation strategy under Behavior B. It is FFS to use 16QAM or 64QAM in test cases.
Table 3-1 list for proposals of timing ranges of each timing correction method can support
	Timing offset correction method 
	16QAM / Timing offset ranges
	64QAM / 16QAM / Timing offset ranges

	
	[-0.5,3]
	[-0.5, 2.4]
	[-0.5, 2]
	[-1, 1.5]
	[-0.5,3]
	[-0.5, 2.4]
	[-0.5, 2]
	[-1, 1.5]

	Option 2
	Fail
	Fail
	Pass
	Fail
	Fail
	Fail
	Fail
	Fail

	Option 3a
	Fail
	Fail
	Pass
	Pass
	Fail
	Fail
	Pass
	Fail

	Option 3b
	Fail
	Fail
	Pass
	Pass
	Fail
	Fail
	Pass
	Pass

	Option4
	Fail
	Fail
	Pass
	Pass
	Fail
	Fail
	Pass
	Pass


4 Reference
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5 Appendix

5.1 Simulation assumptions to evaluate impact of time offset
Currently, there are different CoMP deployment scenarios, including:

· Scenario 1: TP1 (macro), TP2 (Pico) has different cell ID, both transmit CRS

· Scenario 2: TP1 (macro), TP2(Pico) has same cell ID, both transmit CRS

· Scenario 3: Only TP1(macro) transmit CRS, TP2 (Pico) only transmit PDSCH

Scenario 3 is simulated in this contribution.
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Table 5-1: Simulation Assumptions

	Deployment Scenario
	Scenario 3

	Fading Channel
	EPA5Hz

	Channel BW
	(1)10MHz
(2)1.4MHz

	Resource allocation
	(1) 50RB

(2) 6RB

	Antenna configuration
	4x2

	MCS
	(1) 64QAM 3/4

(2) 16QAM 1/2

	Max HARQ transmission number
	4

	Power imbalance between TP1 and TP2
	0dB

	Rank/PMI
	Fixed (1, 1) 

	Timing offset
	[-2:0.5:2]us

	Timing offset estimation
	Estimation based on CSI-RS
Timing filter between estimated samples applied 

	Ideal timing
	No timing offset between different RS types
UE tracking on CRS for synchronization.


5.2 Simulation results for timing offset
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Figure 5-1: Timing offset correction performance: Option 2, 16QAM 1/2, 50RB
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Figure 5-2: Timing offset correction performance: Option 2, 64QAM 3/4, 50RB
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Figure 5-3: Timing offset correction performance: Option 2, 16QAM1/2, 6RB
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Figure 5-4: Timing offset correction performance: Option 2,64QAM 3/4, 6RB
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Figure 5-5: Timing offset correction performance: Option 3a, 16QAM1/2, 50RB
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Figure 5-6: Timing offset correction performance: Option 3a, 64QAM3/4, 50RB
[image: image12.png]1600000

1400000

1200000

1000000

800000

3
=3
=
=)
3
2
=
F

600000
400000
200000

0
-20-1000 1.0 20 3.0 40 50 6.0 7.0 8.0 9.0 10.011.012.013.0

SNR[dB]





Figure 5-7: Timing offset correction performance: Option 3a, 16QAM1/2, 6RB
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Figure 5-8: Timing offset correction performance: Option 3a, 64QAM3/4, 6RB
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Figure 5-9: Timing offset correction performance: Option 3b, 16QAM1/2, 50RB
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Figure 5-10: Timing offset correction performance: Option 3a, 64QAM3/4, 50RB
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Figure 5-11: Timing offset correction performance: Option 3a, 16QAM1/2, 6RB
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Figure 5-12: Timing offset correction performance: Option 3a, 64QAM3/4, 6RB
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