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1. Introduction
A study item of the MIMO OTA testing for multi-antennas mounted on UE/MS was agreed in RAN 43 meeting [1].  The main purpose of the study item is to establish a commonly acceptable testing methodology in terms of complexity and cost in order to adequately evaluate the MIMO antenna performance of multi-antennas employed for the receive diversity or MIMO transmission [2].  In this contribution, we discuss the adequate number of probe antennas in spatial fading emulator (SFE). We present a theoretical analysis method in order to obtain the adequate number of probe antennas in SFE and show the results when assuming a single-cluster model [3] and SCME [4] as a MIMO channel model.
2. Analysis method
The probe antennas are uniformly circularly arrayed in the SFE. So, the issue to clarify the adequate number of probe antennas resolves itself by clarifying the installation range, 2 and the interval, , as shown in Fig. 1. Furthermore, this means analyzing the influence of limiting the observation domain of the power angular spectrum (PAS) and of sampling the PAS with respect to the spatial correlation of the received signals between reception point x and x+x. 
Incidentally, the PAS in the single-cluster model is Laplace distribution and the PAS in SCME is expressed as several clusters where each cluster is defined as a Laplace distribution, i.e., mixed Laplace distribution. So, in this section we assume that the PAS is constructed by one Laplace distribution cluster and analyze the influence of limiting the observation domain of the PAS and of sampling the PAS with respect to the spatial correlation.
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Fig. 1. Radiation part in SFE and power angular spectrum
2.1 Spatial correlation function

When the probability density function of the PAS, P(), is assumed to be a continuous function for the arrival angle, , as is well known, the spatial correlation function, (x), in a Rayleigh fading environment is expressed as
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Here, k0 is the wave number and Pm is the total reception power expressed by 
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Note that reception antenna directivity is not considered in order to simplify the discussion for (1) and (2). Although we can obtain the spatial correlation coefficient from (1), it is generally difficult to solve (1) theoretically for an arbitrary PAS. Therefore, we focus on the exponential function in (1) expressed by a Bessel series as 
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where Jn(.) is the Bessel function of the first kind of the nth-order. By using this relationship, the spatial correlation function becomes 
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(4)

where C(n) is the Fourier spectrum of the PAS expressed by
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Here, the Fourier spectrum is normalized by the total reception power, Pm. Equation (4) means that the spatial correlation function is expressed by the Bessel series with the Fourier spectrum of the PAS as coefficients and the spatial correlation is only characterized by the Fourier spectrum. Equation (4) is a basic equation in our method. In other words, the spatial correlation characteristics can be investigated based on the results of Fourier analysis of the given PAS and properties of the Bessel function.
When defining the Laplace distribution with central angle  and standard deviation  within the domain of (-, +), the PAS is expressed by 
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(6)

By substituting (6) into (5), the Fourier spectrum is given by
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(7)

where 
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Next we analyze the influence of limiting the observation domain of the PAS and sampling the PAS with respect to the spatial correlation. Note that since the Fourier spectrum for the Laplace distribution, C(n, =), is approximated by 
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 and = 0 is regarded as a true value in this document.
2.2 Influence of limiting the observation domain of the PAS
Figure 2 shows the calculated Fourier spectrum from (7) with the observation domain, , as a parameter. From this figure, we can understand the error, which is defined as an increase in the difference from the true value when the value of  is smaller. Here the error, C(n), is given by 


[image: image12.wmf](

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

{

}

1

2

1

1

sin

1

2

lim

2

2

2

2

+

-

+

-

+

=

-

=

D

-

-

¥

®

s

d

s

s

s

n

e

n

Θ

n

e

e

n

C

n

C

n

C

Θ

Θ

jn

Ψ

Θ

.



(8)

Figure 3 shows the calculated error from (8). In this figure, the envelop of the error, e, given by 
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(9)

is shown as dashed lines. From (8) and Fig. 3, we find that the peak nearest to n=0 is the maximum error for each . So, when we decide the allowable error, the required minimum value for  can be obtained. In addition, when we roughly estimate the required minimum value of , the following equation, which is obtained by transforming (9) using n=0 and the allowable error, e, n=0, can be used.
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By using (10), for example, we can estimate the required minimum value of  as 2.15 when e, n=0 =0.1. Figure 4 shows the spatial correlation coefficient, which is obtained by substituting (7) into (4). We understand from this figure that the spatial correlation coefficient at  =2.15 is calculated with relatively high accuracy. The difference from the true value is within 
[image: image15.wmf]±

0.06, when x 
[image: image16.wmf]£

3.
We conclude that (10) becomes the criterion for deciding the adequate installation range, 2, for the probe antennas to minimize the error of the spatial correlation coefficient in the SFE.
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Fig. 2. Normalized Fourier spectrum                     Fig. 3. Calculation error of Fourier spectrum
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Fig. 4. Calculated spatial correlation coefficient          Fig. 5. Normalized Fourier spectrum for sampling PAS
2.3 Influence of Sampling PAS
Now, we assume that the PAS is given as discrete data with sampling interval  (=2/(2K+1)), where the number of samples is (2K+1). Based on this assumption, the calculation in (5) becomes a discrete Fourier transform. Therefore, when the power of each sample of PAS is Pk=P(k) (k=-K, -K-1,…,0,…,K-1,K), the Fourier spectrum, C(n), is expressed by
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Therefore, C(n) is a periodic function with the fundamental period of (-K, K). Figure 5 shows the Fourier spectrum with K=10. Note that the observation domain is not limited, i.e. ->
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.

In a Rayleigh fading environment, when applying the Schwarz inequality, the power spatial correlation function, p, is expressed by 
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(12)

Here, C(n) is the Fourier spectrum of the continuous PAS. Now, we introduce new parameters, QJ and QC, which are defined by 
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(13)
and
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(14)
respectively. In the case of nsum->
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, both QJ and QC are identical to one. Therefore, when we decide K from
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it can be said that the influence of the sampling PAS is minimized. Here, arg(.) in (15) represents argument nsum that satisfies the condition in the bracket. In the following, we discuss the characteristics of QJ and QC, when assuming the Laplace distribution as the PAS.

Figure 6 shows the relationship between nsum and QJ. We can estimate from this figure that the required minimum values of nsum at x=0.5, 1.0, 1.5, 2.0 are respectively 4, 8, 11, and 14 for QJ
[image: image28.wmf]³

0.99. The relationship between x and the required minimum value of nsum with QJ as a parameter is shown in Fig. 7. From this figure, we understand that the required minimum value of nsum linearly increases to x.
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Fig. 6. Relationship between nsum and QJ                     Fig. 7. Relationship between x and required

 minimum value of nsum with QJ as a parameter
In order to simplify the discussion of QC, we assume that the observation domain is not limited, i.e., ->
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, and n is a real number, s. Based on this assumption, by substituting (7) into (14), QC is given by 
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(16)

Figure 8 shows the relationship between S and QC. Since nsum is equal to ceil (S), we can estimate from this figure that the required minimum values of nsum at =50, 35, 10 degrees are respectively 6, 8, and 28 for QC
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0.99. The relationship between  and the required minimum value of nsum with QC as a parameter is shown in Fig. 9. From this figure, we understand that the required minimum value of nsum exponentially increases according to a decrease in the value of .
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Fig. 8. Relationship between S and QC                   Fig. 9. Relationship between s and required
                                                                                                minimum value of nsum with QC as a parameter

Figure 10 shows the calculation errors of spatial correlation coefficients when K=arg(QJ
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0.99) and K=arg(QC
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0.99). Here the error is defined by the difference between absolute values and the true value is at K->
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 (or = 0) as mentioned above. From Fig. 10, we find that when x becomes large the error at K=arg(QC
[image: image39.wmf]»

0.99) increases and the error at K=arg(QJ
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0.99) decreases, the errors agree with each other at x=1.0. This is because the value of arg(QC
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0.99) is equal to 8 at =35 degrees as shown in Fig. 9 and the value of arg(QJ
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0.99) becomes larger than 8 at x >1.0 as shown in Fig. 7. We conclude that (15) becomes the criterion for deciding the adequate sampling interval, , of probe antennas in order to minimize the error of the spatial correlation coefficient in the SFE.
[image: image43.emf]-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

00.511.522.53

Distance between points, x()

Calculation error of |



|

=0°

=35°

K=arg(Q

C 

≒0.99)

K=arg(Q

J

≒0.99)


Fig. 10. Calculation errors of spatial correlation coefficients 
when K=arg(QJ
[image: image44.wmf]»

0.99) and K=arg(QC
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3. Adequate number of probe antennas
3.1 Single-cluster model
In the case of single-cluster model, we can estimate the adequate number of probe antennas (= 2 /) from the values of 2 and  calculated from (10) and (15), as shown in Figs. 11, 12. Figure 13 shows the estimated number of probe antennas. The larger the values of  and x, the larger the adequate number of probe antennas becomes, even though a minimum value exists depending on the value of . Here, the angle spread of the cluster in an urban macrocell environment is defined as 35 degrees in the 3GPP and WINNER II project, and we believe that the maximum separation between antenna elements mounted on a mobile terminal is approximately 1.5. When taking these into consideration, we can estimate that the adequate number of probe antennas in the SFE to be approximately 10.
[image: image46.emf]0

60

120

180

240

300

360

00.050.10.150.2

Allowable error, 

e, n=0

Adequate installation range, 2



(deg.)

=50°

=35°

=10°

          [image: image47.emf]5

10

15

20

25

30

00.511.522.53

Distance between points, x()

Adequate interval, 



(deg.)

=50°

=35°

=10°

Q

J 

= Q

C 

≒0.99


Fig. 11. Adequate installation range for probe antennas     Fig. 12. Adequate interval between probe antennas

[image: image48.emf]0

5

10

15

20

25

00.511.522.53

Distance between points, x()

Adequate number of probe antennas

=50°

=35°

=10°



e,n=0

=0.1

Q

J 

= Q

C 

≒0.99

Laptop PC

Mobile phone


Fig. 13. Adequate number of probe antennas in single-cluster model

3.2 SCME
When assuming that the PAS is constructed by L distributions, this PAS is expressed by


[image: image49.wmf](

)

(

)

å

å

=

=

=

=

L

l

l

L

l

l

l

P

P

1

1

)

(

1

,

b

a

b

a









(17)

where P(l)() represents the PAS of the lth distribution and l represents the relative power ratio between distributions. In this case, by substituting (17) into (5), the Fourier spectrum is obtained by 
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In (18), C(l)(n) is the Fourier spectrum of the lth distribution. Since, each distribution is recognized as a Laplace distribution in SCME, C(l)(n) is given by
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where 
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. Note that (l) and (l) are the central angle and standard deviation in the lth Laplace distribution, respectively. Figure 14 shows the calculated Fourier spectrum in SCME Urban Macro as shown in Table 1.
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Fig. 14. Fourier spectrum in SCME Urban Macro

Table 1. SCME tapped delay line model.
	Scenario
	Urban Macro

	Angle-of-Arrival (deg)　/ path power (dB)
	1
	65.7
	0.00

	
	2
	45.6
	-2.22

	
	3
	143.2
	-1.72

	
	4
	32.5
	-5.19

	
	5
	-91.1
	-9.05

	
	6
	-19.2
	-12.50


In the case of SCME, the installation range 2 should be 2, because AOAs of clusters are distributed relatively uniformly as shown in Table 1. So, the adequate number of probe antennas is decided only from (15). Figure 15 shows the estimated number of probe antennas considering arg(QC
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0.99) in the SCME is 5. In this figure the adequate number of probe antennas in the SFE is approximately 11 when x is within 1.5. Figure 16 shows the calculated spatial correlation coefficient when the number of probe antennas is 11. We understand that the value relatively agrees with true value when evaluating at x 
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1.5Note that we have confirmed that 15 probe antennas is the best in this case.
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Fig. 15. Adequate number of probe antennas                Fig. 16. Calculated spatial correlation coefficient 

in SCME Urban Macro                                                 in SCME Urban Macro
4. Conclusion
In this contribution, we theoretically discussed the adequate number of probe antennas in spatial fading emulator. Based on our theoretical analysis, we conclude that the number of probe antennas needs to be 10 for single-cluster model with angular spread of 35 degree and needs to be 11-15 for SCME Urban Macro, when assuming that the maximum separation between antenna elements mounted on a mobile terminal is approximately 1.5.
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