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1. introduction

In RAN#20, there have been discussions on the link between the MIMO WI in RAN4 and the work on advanced receivers that could take place in RAN4 [9]. In this contribution, we propose a MIMO receiver architecture using equalization which accounts for multipath and intercode interference encountered in frequency selective fading channels. (Previous results for high-speed downlink packet access (HSDPA) using multiple-input multiple output (MIMO) techniques have focused on flat fading channels [1][2].) This architecture was originally proposed in RAN1 [7] and independently proposed in [8] in the context of the spatial channel model ad hoc group. (The MIMO equalizer is a generalization of the conventional MMSE equalizer for dispersive (single-antenna) channels [5].) We show that this receiver can effectively mitigate the effects of the interference in dispersive channels similar to those given by the MIMO link channel model [3]. 

In Sections 2 through 5, we present a general MIMO equalizer architecture. A SISO (single transmit antenna, single receive antenna) equalizer architecture is a special case of the MIMO architecture. It has been shown that the rake receiver cannot always alleviate the intercode interference in SISO systems based on Shannon capacity simulations [6]. In Section 6, we present simulation results for the proposed equalizer architecture and show how it effectively mitigates the effects of frequency selectivity in a typical urban channel. 

2. Receiver architecture Overview

In frequency selective fading channels, the channel delay spread causes multiple delayed replicas of the transmitted signals to arrive at the receiver. In CDMA systems, spreading code orthogonality is not preserved among signals with different multipath delays, and severe multipath and intercode interference can occur, especially in systems like HSDPA where a large number of orthogonal spreading codes are employed. The interference is so severe that conventional rake receiver techniques which do not account for the interference provide unacceptably poor performance. One technique to account for the interference is the multipath interference canceller [4]. This technique was shown to be effective in a 2 path channel with equal average power paths and one chip delay offset. However, its efficacy has not been shown for more realistic channels (e.g., dispersive MIMO link level channels in [3]) which consist of several multipath components with fractional chip delay offsets. 

To address this potential shortcoming, the proposed receiver architecture uses a linear tap-weight equalizer which attempts to remove the effects of the dispersive channel and thereby reorthogonalizing the spreading codes. Consider a system with M transmit antennas and N receive antennas. We assume that the transmitted signal consists of JM substreams transmitted using code reuse with J orthogonal spreading codes on the HS-DSCH [1] over the M antennas. We ignore the other channels such as the CPICH and DPCHs for simplicity. As shown in Figure 1, the equalizer jointly processes the baseband signal from all N receive antenas in an optimum manner such that the mean squared error between its output and the transmitted signal is minimized. This is simply a conventional minimum mean-squared error (MMSE) linear equalizer generalized to a multidimensional system. On each chip interval, the output of the MMSE equalizer is a M-dimensional complex vector. In the absence of thermal noise and under the assumption of a full rank channel matrix 
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 (defined below), the MMSE equalizer is equivalent to a zero-forcing equalizer whose mth component (m = 1 … M) over successive chip intervals is the chip sequence of the signal transmitted from the mth antenna. This signal is the sum of J data substreams. Despreading this signal with respect to the J codes results in soft symbol estimates for these substreams. The estimates from each of the M MMSE outputs are collected, multiplexed, and passed to the demapper, deinterleaver, and decoder. 


[image: image2.wmf]MMSE

equalizer

Collect

and

mux

JM

sub-

streams

Demap

,

deinterleave

,

decode

 Ant

N

 Ant 1

Despread

 1

Despread

J

Despread

 1

Despread

J

Transmit

antenna 

M

Transmit

antenna 1


Figure 1. Receiver block diagram

3. Transmitted Signal

A high speed data stream is coded, punctured, interleaved, mapped to symbols and demultiplexed into JM equal-rate substreams where M is the number of transmit antennas, and J is the number of orthogonal spreading codes of spreading factor F. Let 
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 denote the symbol from the mth antenna (m = 1 … M) spread by the jth code (j =1 … J). Then the transmitted signal from the mth antenna during this symbol period is
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where 
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 is the jth spreading code, 
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 is the F -by- J spreading code matrix, and 
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 is the vector of data from antenna m. 

4. Received Signal Model 

We first consider a system with a single transmit antenna and single receive antenna. Let 
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 denote the vector of data transmitted over a given frame. The components of 
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 correspond to the components of 
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 taken over successive symbol intervals, and the length of  GOTOBUTTON ZEqnNum346427  \* MERGEFORMAT  is the number of chips per frame. Let L be the delay spread of the channel measured in units of the chip period, and let P be the oversampling factor. The channel coefficient corresponding to the lth chip and pth oversample is 
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 (l = 1 … L, and p = 1 … P). We define 
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 as the received signal sample obtained when the kth chip of 
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where 
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 is the additive noise on the pth sample of the kth chip.  This noise component is a zero-mean, complex Gaussian random variable with variance 
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 per complex dimension. Let E be the span of the equalizer measured in units of the chip period, and let 
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 be the (E + L –1)-dimensional subvector of 
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 starting with the kth term 
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where 
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To generalize this model for M transmit and N receive antennas, we let 
[image: image29.wmf][

]

(1)(2)(3)

T

mmmm

xxx

D

=

x

L

 denote the vector of data transmitted over a given frame over the mth antenna (m = 1 … M) corresponding 
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. Let  GOTOBUTTON ZEqnNum617768  \* MERGEFORMAT  be the (E + L –1)-dimensional subvector of 
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 as the channel coefficient between the nth transmitter (n = 1 … N) and mth receiver (m = 1 … M) corresponding to the lth chip and pth oversample. Let 
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, l = 0 … L –1, p = 1 … P. Let 
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, the received signal vector at the nth antenna can be written
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By stacking the received vectors and generalizing the definition of 
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The matrix 
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 and the vectors x(k) and n(k) have also been generalized and redefined for the multiple antenna case. The sizes of 
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5. Equalizer Derivation

Let the components of 
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 be a M-dimensional vector whose mth component is the transmitted signal from the mth antenna with delay d with respect to sample k: 
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. Given y(k), the minimium mean-square error (MMSE) equalizer 
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 (an M -by- PNE complex matrix) minimizes the mean-square error between the equalizer output 
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where we have used 
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where 
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 is a E+L-1 dimensional unit vector, z is a E+L-1 dimensional vector of zeroes, 
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, and  GOTOBUTTON ZEqnNum100930  \* MERGEFORMAT  is the noise covariance matrix. If we assume that the noise is white and uncorrelated among antennas, 
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 denotes the j -by- j identity matrix. Note that because the MMSE equalizer is only dependent on the power of the chip sequences and not their actual values, 
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 is independent of the time index k. Hence it needs to be recomputed at the rate of significant channel variations. Using an alternative MMSE detector design which depends on the spreading sequences, the equalizer taps would have to be updated whenever either the spreading codes change or the channel changes significantly. In systems with long spreading codes, the spreading codes change ever symbol, therefore the equalizers would have to be computed each symbol interval. The computations would be in an enormous computational burden. Note that for a single antenna system (M = N = 1), the equalizer in (3)

 reduces to the conventional single antenna MMSE equalizer for dispersive channels [5]. 

The MMSE equalizer 
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 simultaneously accounts for three types of interference with respect to a desired data stream corresponding to a given code and transmit antenna: the self-interference (intersymbol interference) due to the multipath delay spread, multipath interference from data streams spread by other codes, and spatial interference from data streams sharing the same code but transmitted from other antennas. 

6. Simulation assumptions

We perform link level simulations and measure the frame error rate (FER) versus geometry for a system with a single transmit and single receive antenna. We consider two transport block formats, one with QPSK modulation and one with 16QAM modulation. The transport block formats are summarized in Table 1 below. The channel is a typical urban channel whose power delay profile is shown in Table 2. 

	CQI value
	transport block size
	number of HS-PDSCH codes
	modulation

	15
	3319
	5
	QPSK

	22
	7168
	5
	16QAM


Table 1. Transport block formats for simulation

	delay (s)
	relative power (dB)

	0.000
	-5.7

	0.217
	-7.6

	0.512
	-10.1

	0.514
	-10.2

	0.517
	-10.2

	0.674
	-11.5

	0.882
	-13.4

	1.230
	-16.3

	1.287
	-16.9

	1.311
	-17.1

	1.349
	-17.4

	1.533
	-19.0

	1.535
	-19.0

	1.622
	-19.8

	1.818
	-21.5

	1.836
	-21.6

	1.884
	-22.1

	1.943
	-22.6

	2.048
	-23.5

	2.140
	-24.3


Table 2. Power delay profile for typical urban channel

The MMSE fractionally spaced equalizer (FSE) uses 64 taps and 2 times oversampling. The data power is assumed to be 80% of the total transmit power. In Figure 2, the performance of the rake receiver is interference limited, even for QPSK constellations. The advanced receiver provides a performance improvement of over 6dB at 10% FER. For 16QAM modulation in CQI 22, the rake performance is interferenced limited, and its FER is pegged to unity no matter how high the geometry is. In contrast, the advanced receiver performs well without an error floor as low as 1% FER.
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Figure 2. Link level performance, CQI 15
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Figure 3. Link level performance, CQI 22

7. Conclusions 

We have shown that the performance of the conventional rake receiver architecture results in an error floor in a frequency selective typical urban channel. An MMSE space-time equalizer architecture was proposed which removes this error floor by effectively mitigating the effects of the intercode interference caused by the frequency selective fading. Preliminary performance results indicate that the MMSE equalizer followed by despreading followed by decoding not only removes the error floor but also provides performance improvements due to multipath diversity over the flat channel. To conclude, we propose to adopt this MMSE equalizer architecture as a reference structure of advanced receiver in the MIMO WI in RAN4.
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