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Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document describes the statistical theory and concepts applied in the conformance test of the user equipment (UE) so as to improve test speed.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.  In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]
3GPP TS 34.121: "Terminal Conformance Specification; Radio transmission and reception (FDD)".

[2]
3GPP TS 34.122: " Terminal Conformance Specification; Radio transmission and reception (TDD)".

3 Definitions, symbols and abbreviations
Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and TR 25.990 [6].
3.1
Definitions

For the purposes of the present document, the following additional terms and definitions apply.

Wrong Decision Probability: Chance of incorrect judgement based on the given test results.

3.2
Symbols
For the purposes of the present document, the following symbols apply:

[…]
Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken
3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

BER
Bit Error Ratio
BLER
Block Error Ratio
3.4
Equations

4 Improvement of test speed based on statistical approaches
4.1 Early Pass/Fail termination for BER/BLER testing

<This explains the importance of statistical significant for test speed improvement in BER/BLER testing.>

4.2
Pass/Fail rate and confidence level on RRM testing
<This explains the importance of statistical significant for pass/fail rate and confidence level on RRM testing.>

5 Early Pass/Fail termination for BER/BLER testing

5.1
General

5.1.1 Core specification values and derived parameters

<This describes the values given by core specifications and derived parameters used in testing.>

5.2 Statistical testing of receiver BER/BLER performance

<It needs to discuss contents balance between here and Annex-F.6 in TS34.121/TS34.122.>

5.2.1 Test definitions and procedures

5.2.2
Assumptions and statistical parameters

6 Pass/Fail rate and confidence level on RRM testing

6.1 General

6.2
Statistical testing of RRM delay performance
Annex A:
Definitions of distribution functions and parameters to be used

1. Properties of the Poisson Distribution
Description of a statistical experiment by a distribution function and basic characteristics of the distribution
2. Equivalence between Poisson Distribution and Chi Square Distribution
Here it is shown, that both distributions are equal. Just the form is different. On the other hand there are two inverse cumulative operations. One of them is useful for our purpose.

3. Confidence interval
Introduction into the notion

4. Application of the confidence interval to decide the outcome of the test
Using the notion of the confidence interval, we calculate the early pass and early fail limit.

5. Test time reduction
Using 4 the outcome of the test is connected with two qualities, a good one and a worse and variable one. Introducing the bad DUT factor M, the quality of the test is now uniform and test time is further reduced.

6. Calculation of the intersection coordinates (maximum number of sample and the normalized test limit)
Calculus for intersection co-ordinates of the early pass and early fail limit.

7. Wrong decision risk F
1 to 6 applies the wrong decision risk for a single test step D. However it is desirable to have a predefined wrong decision risk for the entire test F. The approach to derive F from D this is explained here.
A.1
Properties of the Poisson distribution
Note: the following text is expressed in terms of BER=bit error ratio. However it can be used for BLER (Block error ratio) as well. Even for 1- Success Ratio, used in RRM delay tests, the theory can be used.
With a finite number of samples (ns), the final bit error ratio BER cannot be determined exactly.

Applying a finite ns, we measure a number of errors (ne).

ne/ns =ber is the preliminary bit error ratio.

In a single test we apply a predefined number of samples ns and we measure a number of errors (ne). ne is connected with a certain differential probability in the Poisson distribution. We don't know the probability and the position in the distribution conducting just one single test.

Repeating this test infinite times, applying repeatedly the same ns, we get the complete Poisson distribution. The average number of errors is NE. NE/ns is the final BER.

Poisson Distribution: 

dpois(ne,NE)=(NEne/ne!)e-NE

(1)
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Figure A‑1Example of Poisson distribution curve

The Poisson distribution has the variable ne and is characterised by the parameter NE. 

Real probabilities to find ne between two limits are calculated by integrating between such limits.

Note: The Poisson distribution is an approximation: Independent error occurrence is described by the binomial distribution. If the BER approaches 0 the Poisson distribution approximates the binomial distribution. 

A.2
Equivalence between Poisson distribution and Chi Square distribution
The experiment, the Poisson distribution is based on, is having observed a certain number of samples (ns), the number of events (ne) is counted to calculate the ratio ne/ns.

The experiment, the Chi Square distribution is based on, is having observed a certain number of events (ne), the number of samples (ns) is counted to calculate the ratio ne/ns.

Poisson and Chi Square are valid only if ne<<ns
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Figure A‑2 Comparison of Chi-Squared and Poisson distribution

The dotted blue function is the Chi-squared distribution, using the parameters of the Poisson distribution. We scaled, offset and changed the interpretation of variable and parameter such that both distributions match. The Poisson distribution is a discrete distribution. Such scaled the Chi Squared distribution interpolates the Poisson distribution exactly for all NE (degenerated for NE=ne=0).

The experiment of the Chi Square distribution is always terminated by an event,

In contrast the experiment of the Poisson distribution almost never is terminated by an event because of ne/ns-->0. This explains that the Poisson distribution needs one event more, to equal in its form the Chi Square distribution


2*dchisq(2*NE,2*ne) = dpois(ne-1,NE) describes the experiment, terminated by an error. 


2*dchisq(2*NE,2*(ne+1)) = dpois(ne,NE) describes the experiment, terminated by any sample.

The terminating error may be the artificial error at the beginning of the test, or the last error, causing the fail.
In the next comparison shows dpois versus dchisq.

The first 3D plot shows the Poisson distribution: (Figure A‑3)


Variable: ne
Range 0 to 10
Column in the table
0 to 10- axis in the plot


Parameter: NE
Range 0 to 10
Row in the table
0 to 100 axis in the plot

The second 3D plot shows the Chi Square distribution: (Figure A‑4)


Variable: NE
Range 0 to 10
Column in the table
0 to 100- axis in the plot


Parameter: ne
Range 0 to 10
Row in the table
0 to 10 axis in the plot

Columne 0 is degenerated
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Table A‑2 Chi-squared distribution calculation
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Figure A‑4 3D plot for Chi-squared distribution

Observation:
1) The rows in Poisson distribution correspond the columns in the scaled Chi-squared distribution and vice versa.

2) Poisson distribution at ne=0 versus NE is the exponential distribution
Chi-squared distribution at ne=0 (degree of freedom=1) versus NE is also the exponential distribution

see the next plot:
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Figure A‑5 Comparison between Poisson and Chi-squared distribution

Inverse Cumulative Operation:
We have seen: Chi Square and Poisson both describe the same array: ne versus NE.

The figures above show, that NE and ne in both functions are not commutative.

Hence there are two inverse operations (a) and (b):
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(a)
with D=wrong decision probability or confidence level (input).

ni is the integration variable

ne is the measured value.(input, discrete) It is the  integration limit

NE (real) is tuned such that the integral is consistent.

It returns an NE as a function of the two parameters D and ne. qchisq(D,ne)
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(b)

NI is the integration variable

NE (real) is the integration limit

ne (discrete) is tuned such that the integral is consistent.

It returns ne as a function of the two parameters D and NE: qpois(D,NE)

Our target requires a). This is usually called the Inverse Cumulative Chi Square function.

(b) is the solution for another target. This is usually called the Inverse Cumulative Poisson function.

(a) returns a greater NE than (b) returns with respect to ne. (easily visible in the figures)

The difference (a)-(b) is small. This is also visible from the figures: ne and NE are close to commutative.

(a) returns a continuous NE, (b) returns a discrete ne.
A.3
Confidence interval
In a single test we apply ns samples and measure ne errors. The result can be member of different distributions each characterized by another parameter NE. We ask for two of them:

1) The worst possible distribution NEhigh , containing our measured ne with [D= 0.0085%] probability in the sense
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(2)

ni is the integration variable

ne is the measured value

NE is the variable to tune in order to make the integral consistent.

The result of the inverse cumulative operation is NEhigh
2) The best possible distributions NElow , containing our measured ne with [D=0.0085%] probability in the sense
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(3)

The result of the inverse cumulative operation is NElow 

To illustrate the meaning of the range between NElow and NEhigh:

In the case our measured value ne is a rather untypical result (just [0.0085%] probability) nevertheless the final result NE can still be found in this range, called confidence interval.

The probabilities D in (1) and (2) can be independent like in GSM, but we want to have them dependent and equal.

The inverse cumulative Chi Squared distribution gives the wanted results: 

Inputs: number of errors ne, measured in this test.


Probabilities D and the complementary probability 1- D
Output: NE, the parameter describing the average of the distribution.
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Figure A‑6 Confidence Interval

Same as the width of the distributions the confidence interval increases proportional to SQR(ne), that means, it increases absolutely, but decreases relatively to the measured number of errors.
A.4
Application of the confidence interval to decide the outcome of the test
If we find the entire confidence range, calculated from a single result ne, on the good side of the specified limit we can state: With high probability 1-D, the final NE is better than the limit. 

If we find the entire confidence interval, calculated from a single result ne, on the bad side of the specified limit we can state: With high probability 1-D, the final NE is worse than the limit.

With each new test we update our preliminary data for ns, ne and ber. For each new sample we calculate the confidence interval and check it against the test limit.

Once we find the entire confidence interval on the good side of the specified limit we allow an early pass. 

Once we find the entire confidence interval on the bad side of the specified limit we allow an early fail.

If we find the confidence interval on both sides of the specified limit, it is evident neither to pass nor to fail the DUT early. 

Transcription of the above text into formulas:

The current number of samples ns is calculated from the preliminary ber and the preliminary ne 


ber = ne/ns


(6)

BERlim = NElimit  / ns

(7)
for abbreviation in the formula: bernorm  = ber/BERlimit = ne/ NElimit    (normalised ber)
Early pass stipulates: 


NEhigh < NElimit

(8)
Early fail stipulates:

NElow > NElimit

(9)
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The early fail and the early pass limit are displayed in Figure A‑7:
early pass limit
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early fail limit
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Figure A‑7 Early pass and early fail curves

A.5
Test time reduction
Whichever ne we propose as a final stop condition e.g. ne =200, the test can leave the area between the early pass and the early fail limit through the open end of the right side of diagram 3. This situation needs an arbitrary pass or fail decision. E.g. pass, if the test hits the vertical 200-error line. This situation has the following drawback: The test has two different qualities. A good one, when the test hits an early pass or early fail limit, and a worse and variable one, when the test hits the vertical 200 error line; variable, depending on the height, it crosses the line. The quality of the test in terms of wrong decision risk is variable in the range D up to as bad as 50%. We can replace the situation against a better trade-off:


Instead a test with different qualities against one limit,


we design a test with a fixed uniform quality against two limits,


(gaining further test time reduction).
We maintain the definition of the early fail limit:

(a) We fail a DUT and accept the probability of D= 0.0085% that it is actually better than the limit.

We propose a meaningful redefinition of the early pass limit:

(b) We pass a DUT and accept the probability of D=0.0085% that it is actually worse than

M times the limit (M>1).(M = Bad DUT factor)

This produces the following consequences:

(1) The early pass limit is shifted upwards by the factor of M

(2) The early fail and the early pass limit intersect.

(3) The intersection coordinates are


 the normalized test limit 


and the maximum number of events

Transcription of the above text into formulas:


berlimbadpass:
early pass limit against
the bad DUT limit 
(12)


berlimfail:
early fail limit against
the specified limit
(13)
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Figure A‑8 Early pass and early fail curves with multiplication factor M

A.6
Calculation of the intersection coordinates
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initial guess of target number of events
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target number of events
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A.7
Wrong decision risk F
Provided a single BER trajectory with final BER on the limit hits the early fail limit.  If a  fail is decided at this instant of the test, the wrong decision risk is as small as D. For each member of a large population of DUTs a wrong decision  can happen, with probability D, accumulating to an amount F > D for the entire population. 

D is the wrong decision risk based on the statistical totality of samples with BER on the limit.

F is the wrong decision risk based on the statistical totality of DUTs with BER on the limit.

(The same holds for a bad DUT, hitting the early pass limit.)

We call D the wrong decision risk at a single  test step and F  the wrong decision risk for the entire test. For a real test it is desirable to define in advance the wrong decision risk F of the entire test. An exact theory is not available for this problem. It is proposed to derive D from F by the following simulation:

A large population of DUTs with BER on the limit (limit-DUT) is simulated and decided against the early pass and early fail bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F (D<F<1) falsely fails.

The complementary simulation is: 

A large population of DUTs with M*BER (bad DUT) is simulated and decided against the early pass and early fail bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F (D<F<1) falsely passes. 

Both false decision fractions are approximately equal and represent the wrong decision probability F for the entire test. D is tuned such that F corresponds to the predefined wrong decision probability.
Annex-B:
F to D conversion in BER BLER tests

B.1
Conversion F to D
Annex F.6.1 in TS 34.121 gives a statistical approach for BER BLER tests. It gives early pass and early fail conditions. The formulas for this condition contain the parameter D, the wrong decision probability for a single test step. However it is desirable to have a wrong decision probability for the entire test F. This contribution explains the way, how to derive F from D and gives results for a set of parameters.
B.2
Introduction
Provided a single BER trajectory with final BER on the limit hits the early fail limit.  If a fail is decided at this instant of the test, the wrong decision risk is as small as D. For each member of a large population of DUTs a wrong decision  can happen, with probability D, accumulating to an amount F > D for the entire population. 

D is the wrong decision risk based on the statistical totality of samples with BER on the limit.

F is the wrong decision risk based on the statistical totality of DUTs with BER on the limit.

(The same holds for a bad DUT, hitting the early pass limit.)

We call D the wrong decision risk at a single  test step and F  the wrong decision risk for the entire test. For a real test it is desirable to define in advance the wrong decision risk F of the entire test. An exact theory is not available for this problem. It is proposed to derive D from F by the following simulation:

A large population of DUTs with BER on the limit (limit-DUT)  is simulated and decided against the early pass and early fail bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F (D<F<1) falsely fails.

The complementary simulation is: 

A large population of DUTs with M*BER (bad DUT) is simulated and decided against the early pass and  early fail bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F (D<F<1) falsely passes. 

Both false decision fractions are  approximately equal and represent the wrong decision probability F for the entire test. D is tuned such that F corresponds to the predefined wrong decision probability.

B.3
The simulation procedure

B.3.1
Equal pass and  fail probability

A population of DUTs on the limit is established. 
Quantity 10 000

Preselected BER 1%

An early fail and an early pass limit is established. With D (wrong decision risk) and M (bad DUT factor)

With target ne and test imit as a side result.

D is tuned in the inner loop

M and Fpredefined are varied in the outer loop

During the simulation

A member of the population leaves the statistical totality if

An error happens and the early fail limit is hit  (false fail)

An error happens and the early pass limit is hit or crossed (correct pass)

The fraction false fails / 10 000 = F is recorded.

Inner loop: In repeated trials D is tuned, such that F ≤ Fpredefined (conservative approach).

Having decided for a  specific D the simulation is repeated again 10 times and Fmin, Fmax, and Fmean are recorded.

The complementary simulation is done with a population of bad DUTs

(same quantity, same M, same Fpredefined , same D)

Observation 1:  the false pass fraction  is slightly lower than the false fail fraction. 

Hence the result is even more conservative for the false pass.

Outer Loop: 
M is varied from 1.1 to 1.5 in steps of 0.1

Fpredefined is varied from 0.2 %,  0.5 %,  1%,  2% to 5%.

Observation 2: For lower wrong decision risks F the false decisions in 10 000 DUT are less.

Hence the variance of F in the 10 repetitions relatively increases. 

For lower wrong decision risks F the simulation time increases.

Hence the compensation of the increasing variance of F by more repetitions is limited by the simulation time,

or vice versa: the simulation results for F converge to a final value, investing infinite effort for simulations.

For practical and security reasons the Ds for lower Fs are decided more conservative than the equivalent ones for higher Fs

B.3.2
Unequal pass and fail probability

For statistical test, frequently repeated, a single false fail can fail the composite test. This can be combated by a decreased false fail risk. This costs test time.

A single false pass does not have this effect on the composite test. Hence it is not necessary to consume increased test time due to decreased false pass risk for the pass probability. Hence unequal pass and fail probabilities are treated for very low false fail risk.

A population of DUTs on the limit is established. 
Quantity 10 000

Preselected BER 1%

In the complementary simulation

a population of bad DUTs is established (same parameters)

Common for both simulations:

An early fail limit is established with Dfail and an early pass limit is established with Dpass (D wrong decision risk Dfail  <  Dpass) and M (bad DUT factor)

With target ne as a side result.

Dfail and  Dpass are tuned  independently in the inner loop

M is varied in the outer loop

During the simulation

A member of the population leaves the statistical totality if

An error happens and the early fail limit is hit  (false fail)

For the complementary simulation: (correct fail)

An error happens and the early pass limit is hit or crossed (correct pass)

For the complementary simulation: (false pass)

The fraction false fails / 10 000 = Ffail and the fraction false pass/10 000 = Fpass are recorded.

Inner loop: In repeated trials Dfail and  Dpass are tuned  independently , such that F fail and  Fpass ≤ Fpredefined (conservative approach).

Having decided for a  specific Dfail and  Dpass  the simulation is repeated again 10 times and Fmin fail, Fmax fail, and Fmean fail  and Fmin pass, Fmax pass, and Fmean pass are recorded.

Observation 3:  The Dpass must be slightly lower than the equivalent D in the case for  equal probabilities (a). 

Due to lower Dfail  the target number of errors increases (e.g. 345 ( 403), accumulating more single step wrong decisions. This is compensated by a lower Dpass
B.4
Result of the simulation: M-F array
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