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1. Summary

This contribution describes an AMC (Adaptive Modulation and Coding) function for incorporation into a Node-B emulator for the purpose of HSDPA performance testing where performance assessment is based on measured information bit throughput using a variable reference channel as defined in [7]. A specific method is proposed for selecting the information bit rate, modulation type, number of codes and forward error correction coding rate based on the UE measurement report. The proposed approach is relatively simple, and – since it incorporates the Hybrid Automatic Repeat Request (H-ARQ) protocol, Incremental Redundancy (IR) and the UE measurement report aspects of HSDPA into a single test – represents a efficient basis for assessing the performance of a UE receiver.

2. Introduction

In [3], it is suggested that RAN1’s current working assumption of CPICH-SNR-based UE reporting of a TFRC cans be simplified to permit direct reporting of the underlying CPICH SNR. This simplification also permits straightforward definition of the AMC function required for throughput testing. This is described next.

3. Mapping of CPICH SNR to Information Bit Rate

The first step in the AMC function is to identify the achievable bit rate given the reported UE measurement of the CPICH SNR (
[image: image1.wmf]cpich

SNR

) and the fraction of power available for HS-DSCH transmission. The following heuristic procedure is proposed.

Consider the case of HS-PDSCH transmission in AWGN. Following the notation of [3], the SNR at the output of CPICH despreader is given by:
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In the above, 
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 is the fraction of Node-B power allocated to the CPICH (assumed P-CPICH), 
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 is the fraction of Node-B power allocated to the HS-PDSCH (i.e. allocated in all HS-PDSCH multicodes), 
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 is the spreading factor of CPICH, 
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 is the HS-DSCH information bit rate, 
[image: image7.wmf]c

R

 is the chip rate (3.84Mcs-1), and 
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 is the additive noise power spectral density.

Equation (1.1)

 implies:
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Further, from simulated AWGN HS-DSCH link level performance data (such as that of Fig. 46 of [4]), it can be estimated that – at 0.1 FER – an approximately linear relation between the spectral efficiency and HS-DSCH information bit 
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Using equations 
(1.3)

 we can estimate the nominal achievable spectral efficiency given (1.2)

 and  GOTOBUTTON ZEqnNum684167  \* MERGEFORMAT , 
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. If the spectral efficiency is quantized – as it must be if a specific transport channel block size is in use – then the achievable spectral efficiency is simply that nearest to but less than that given by equation (1.3)

.

Figure 1 and Figure 2 illustrate this procedure for ratios of HS-PDSCH to CPICH chip energy of 1 and 4 respectively (essentially, we are solving the transcendental equation defined by 
(1.3)

 via graph intersection). In each figure, the HS-PDSCH to CPICH power ratio establishes the family of (1.2)

 and  GOTOBUTTON ZEqnNum684167  \* MERGEFORMAT -dependent curves; for each value of 
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 reported by the UE, the transmitted spectral efficiency is given by the intersection of the associated 
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 curve (equation 
(1.2)

) with the linear equation in  GOTOBUTTON ZEqnNum684167  \* MERGEFORMAT  (equation (1.3)

). It can be seen that a higher bit rate can be sustained at higher pilot SNRs (implying higher data SNRs) and at higher values of the fraction of power allocated to HS-DSCH.

In practice during testing, the Node-B emulator would identify the transmission spectral efficiency to be applied to a specific H-ARQ cycle (and therefore the number of transport channel blocks per TTI) using the same procedure, given knowledge of 
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 (the ratio between these quantities would likely vary as a test parameter) and the reported 
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4. Determination of Number of Multicodes, Modulation and Code Rate

Once the bit rate has been determined, other parameters such as the number of HS-PDSCH codes (assumed fixed for re-transmissions once the initial code set size is established for the first transmission), the modulation type (again, fixed for the H-ARQ cycle) and the instantaneous code rate (i.e. per TTI code rate) have to be identified. To this end, the following heuristic algorithm is proposed.

The bit rate in 
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 is given by
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where 
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 is the number of uncoded bits per symbol, 
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 is the number of HS-PDSCH codes and 
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 is the instantaneous code rate.

To begin, we assume QPSK is selected. Then:
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If 
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K

 is the maximum number of codes supported by the capability class
, 
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 is the maximum instantaneous code rate supported by the capability class, 
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 is the minimum code rate of the capability class without repetition of coded bits, then choose the largest value of 
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 such that 



[image: image32.wmf]minmax

max

480000

b

R

rr

K

KK

££

£


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.6)

If the above inequalities cannot be satisfied, we choose 
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 (i.e. 16-QAM) and then choose 
[image: image34.wmf]K

 and 
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 as before.  Essentially, this heuristic prefers to use QPSK with the maximum number of codes such that the code rate is still at least equal to 1/3.

5. Redundancy Version Selection

For the purpose of RAN4 testing, redundancy versions will be chosen according to the proposal in [5] because of the reasons elaborated in the introduction; the approach can be readily revised to follow RAN1’s approach to IR. The following heuristic algorithm will be used to determine the sequence of RVs that are sent.

Define the following ratio:
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where 
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r

 is the instantaneous code rate (i.e. ratio of TTI information bit payload to TTI uncoded bit payload) and 
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r

 is the final code rate (i.e. ratio of TTI information bit payload to number of soft metric locations per ARQ process available in the UE). This ratio represents the ratio of the number of parity bits sent in the first transmission to the number of parity bits actually available.

The sequence of redundancy versions to be used for different values of 
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 is then given by Table 1. In summary, this choice of sequence of RVs tries to achieve the final code rate quickly. It is assumed here that the first four RVs have their starting points in the systematic part and the last four have their starting points in the parity part. 

RV (re-)transmission would continue up to some maximum number of transmissions 
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 after which the TTI information bit payload would be abandoned and a new packet generated for transmission. We propose 
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Table 1 - RV sequence as a function of 
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6. Summary of UE Measurement Feedback and AMC for HSDPA Testing

The following steps outline a proposal for RAN4 HSDPA throughput testing using variable reference channels:

1. The UE calculates the pilot SNR 
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 as outlined in [3] and sends it at the rate of one measurement report per TTI (corresponds to 
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 in Section 8.2 of [6]) to the Node-B emulator.

2. For the particular HS-PDSCH to CPICH power ratio, the HS-DSCH information bit rate 
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 – and hence the TTI information bit payload (after TrCH block size quantization) – is identified based on the procedure described in Section 3 above.

3. The number of codes 
[image: image57.wmf]K

, the modulation type i.e., the number of bits per symbol 
[image: image58.wmf]n

 and the instantaneous code rate 
[image: image59.wmf]r

 are chosen according to Section 4 above.

4. The sequence of RVs in a particular H-ARQ cycle are determined according to Section 5 above.

5. The Node-B emulator assesses the achievable information bit throughput for the UE under test by monitoring the error-free uplink ACK/NACK process.
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Figure 1 Achievable bit rate for various pilot SNRs when 
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Figure 2 Achievable bit rate for various pilot SNRs when 
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� Note that in order to make progress in RAN4 on HSDPA testing, a full description of the Hybrid-ARQ method that is to be used is required. Although some progress has been made in the last RAN1 meeting, it is not complete. In view of this, Motorola’s IR proposal � REF _Ref534703289 \r \h ��[5]� with � EMBED Equation.DSMT4  ��� redundancy versions � EMBED Equation.DSMT4  ��� is adopted here for descriptive purposes. This proposal is not contingent on the adoption of that IR scheme.


� The coefficients for this relationship may be revised subject to further work, and clearly the relationship isn’t optional – e.g. it doesn’t recognize variation in turbo-codeword length with number of codes – but it could form the basis for a sufficient and practical (if not optimal) test.


� Note that some further restrictions on the computed rate are needed to e.g. prevent the computed rate exceeding  that of the UE capability class, or transmitting fewer than 1 transport block.


� Current working assumption in RAN1 assumes � EMBED Equation.DSMT4  ��� is 5,10 and 15.


� We assume � EMBED Equation.DSMT4  ��� for all capability classes; � EMBED Equation.DSMT4  ��� neglecting repetition.
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