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1. [bookmark: _Hlk134894944]Introduction
In R18 SI, we have studied on general aspects, specific issues related to use cases, and interoperability and testability aspects. The agreements have been collected in TR [1].
From RAN#102, some remaining open issues need to be further studied [2].
	Provide specification support for the following aspects:
· Core requirements for the above two use cases for AI/ML LCM procedures and UE features [RAN4]:
· Specify necessary RAN4 core requirements for the above two use cases.
· Specify necessary RAN4 core requirements for LCM procedures including performance monitoring.

Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· Testability and interoperability [RAN4]: 
· Finalize the testing framework and procedure for one-sided models and further analyse the various testing options for two-sided models, in collaboration with RAN1, and including at least: 
· Relation to legacy requirements
· Performance monitoring and LCM aspects considering use-case specifics
· Generalization aspects 
· Static/non-static scenarios/conditions and propagation conditions for testing (e.g., CDL, field data, etc.)
· UE processing capability and limitations
· Post-deployment validation due to model change/drift
· RAN5 aspects related to testability and interoperability to be addressed on a request basis


In this contribution, we further provide our views on testability aspects, especially from general test framework perspective.
[bookmark: _Hlk73468315]
2. Discussion
2.1	AI model introduction 
There are different AI model structures that are mature and popular in AI industry. It is better to have some initial discussions as reference models would be needed when requirements for AI are being defined.
Full connect neural network (FC or MLP), convolutional neural network (CNN) and transformer are current popular AI/ML model backbones. They have achieved great success in image processing, pattern recognition and natural language processing. Then it has been well proved that they are also feasible in AI/ML involved wireless communications. A brief introduction of these backbones will be shown in the following.
Generally speaking, MLP is the most basic neural network. An example of one MLP with one hidden layer is shown in the below figure. The operations of one hidden layer includes one matrix multiplication, one vector addition and one vector passing through the activation function. There are some popular activation functions, e.g., rectified linear unit (ReLu), Tanh and Sigmoid. Activation function brings non-linear operations into the neural network and then gives the capability of approximating arbitrary complex function to the neural network. The depth of MLP is the number of FC layers and the width is the number of neurons in each FC layers.
[image: ]
Fig. 2.1-1. An example of one MLP with one hidden layer
CNN is invented to largely reduce the complexity of FC in image processing. The matrix multiplication in FC would need unaffordable number of parameters and then 2D convolution is introduced to replace the matrix multiplication. For one channel, the multiplications share the same convolution kernel. Fig. 2.1-2 shows an example of how convolution kernel works.
[image: ]
Fig. 2.1-2. The illustration of how convolution kernel works.
Residual neural network (ResNet) has been invented in 2015 and now almost all CNNs have residual blocks. Residual block forces these layers to focus on the high-frequency features, solves the vanishing gradient problem and increases the approximation capability. The neural network can be very deep if residual block is introduced.
[image: ]
Fig. 2.1-3. The illustration of residual block
The depth of CNN is the number of convolution layers. The width of CNN is the number of feature maps in each convolution layers. Fig. 2.1-4. is a diagram of ResNet, where the depth is the number of convolution layers and the width is the number of feature maps in each convolution layer.
[image: ]
Fig.2.1-4. A diagram of ResNet
Transformer is based on attention mechanism. Attention mechanism introduces additional neural network, which can select different features in the original neural network according to different situations. Also, this additional neural network could assign different weights to the original features and these weights could be called as the soft attentions. After this process, the performance of the neural network could be improved, especially for the data under various situations. The depth of transformer is the number of transformer blocks, and the width is the embedding size of attention block. In our two-sided CSI simulations, the sequential length is the number of subbands.
[image: ]
Fig. 2.1-5. An illustration of transformer

2.2	Comparison of AI model performance for CSI compression 
In order to better understand the performance difference for different AI models, initial evaluation was conducted under the CDL-A channel model with 30ns delay. Fig. 6 shows the simulation procedure of the CSI compression. 


Fig. 2.2-1. Illustration of the simulation procedure of CSI compression
The simulation results are provided in Table 2.2-1 with transformer encoder and Table 2.2-2 with CNN encoder, respectively.
Table 2.2-1. Performance comparison for different decoder structure and complexity (Transformer encoder)
	Encoder 
	Decoder
	SGCS (R16 CB: 0.8375)

	
	Back-bone
	Model parameter
	Number of model parameter
	FLOPS
	

	Back-bone: Transformer
Number of model parameter: 4.1M
FLOPS: 5×107
Depth: 10 transformer blocks
Width: embedding=140

	Transformer
	Depth: 18 transformer blocks
Width: embedding=148
	8.0M
	1×108
	0.80

	
	
	Depth: 10 transformer blocks
Width: embedding=198
	8.0M
	1×108
	0.92

	
	
	Depth: 20 transformer blocks
Width: embedding=140
	7.9M
	1×108
	0.62

	
	CNN
	Depth: conv layers
Width: 165 feature maps 
	0.2M
	1×108
	0.88

	
	
	Depth: 17 conv layers
Width: 41 feature maps
	0.2M
	1×108
	0.91

	
	
	Depth: 150 conv layers
Width: 20 feature maps
	0.2M
	1×108
	0.92

	
	MLP
	Depth: 1 FC layers
Width: 9500 neurons
	98.7M
	1×108
	0.91

	
	
	Depth: 10 FC layers
Width: 3200 neurons 
	109.6M
	1×108
	0.89

	
	
	Depth: 15 FC layers
Width: 2600 neurons 
	106.6M
	1×108
	0.83



In Table 2.2-1, transformer encoder is used in the evaluation for verifying performance of different decoders. It can be seen that there could be large performance variance if model structure, including back-bone, parameters of decoder are different even if the complexity (FLOPs) are similar. For same type of decoder, if parameters are different, especially for transformer and MLP type of decoders, performance variance can be observed. The performance of CNN decoder seems not very sensitive to some parameters as listed in the table.
Table 2.2-2. Performance comparison for different decoder structure and complexity (CNN encoder)
	Encoder 
	Decoder
	SGCS (R16 CB: 0.8375)

	
	Back-bone
	Model parameter
	Number of model parameter
	FLOPS
	

	Back-bone: CNN
Number of model parameter: 4.1M
FLOPS: 5×107
Depth: 17 conv layers
Width: 32 feature maps
	CNN
	Depth: 17 conv layers
Width: 16 feature maps
	0.08M
	2×107
	0.88

	
	Transformer
	Depth: 4 transformer blocks
Width: embedding =110
	1.4M
	2×107
	0.84

	
	MLP
	Depth: 3 FC layers
Width: 2200 neurons
	16.5M
	2×107
	0.89



In table 2.2-2, CNN encoder is used in the evaluation for verifying performance of different decoders. Similar observations can be made.
Observation 1: Model structure (back-bone, parameters, e.g., number of layers, etc) also has significant performance impact even if complexity of model (in terms of FLOPS) are similar. 

2.3	Framework of requirements and tests for AI 
Test encoder/decoder is only for the encoder/decoder to be implemented by TE, depending on options for test decoder, which may be different from reference encoder/decoder for defining requirements in 2-sided model framework. Besides, for 1-sided model, specify a reference model for defining requirement would also be need. 
The framework for defining requirements for use cases and corresponding test procedures can be illustrated as in Fig. 2.3-1 and Fig. 2.3-2 for 2-sided model and 1-sided model, respectively. RAN4 testability study should consider all relevant parts in Fig. 2.3-1 and Fig. 2.3-2.
[image: ]
Fig. 2.3-1. Framework for requirements and tests for 2-sided model

[image: ]
Fig. 2.3-2. Requirements and tests for 1-sided model
For legacy demodulation requirements, it is typically defined with assumption of reference receiver, e.g., MMSE receiver or advanced receiver. The reference encoder and reference decoder for defining requirements for UE side model play similar role.
It can be seen from the evaluation results in section 2.2, there are a lot of factors that could impact the AI model performance. Moreover, different companies have different assumptions and implementations of model structure and parameters. Large performance difference can be expected.
When defining performance requirements for CSI compression with 2-sided models, throughput ratio is one metric for CSI compression. To align results from companies, reference decoder should be introduced for defining performance requirements for UE side encoder. Similarly, to derive gNB decoder performance, if necessary, UE side reference encoder should be introduced. Otherwise, it could be high unlikely to align results and derive requirements.
Moreover, the align evaluation results from companies, it also needs to define reference models for both sides. It means to define requirements for UE encoder, both reference encoder and reference decoder should be defined. With only one side reference model, it may still be challenging to derive requirements due to difficulty of aligning results from companies.
Similarly, even for one sided model, reference model should be defined to align results from companies and derive requirements.
Reference model is the approach to define performance requirements. It can be considered as part of principle for defining requirements in the TR. 
Observation 2: RAN4 testability study should consider all the relevant parts for defining performance requirements and testing.
Proposal 1: RAN4 to define reference model for defining performance requirements for one-sided model.
Proposal 2: In 2-side model use case, both reference encoder and reference decoder are introduced for defining performance requirements for UE side encoder.

How to define reference model
In general, options for deciding test encoder can also be used for determining reference encoder.
If test decoder is based on option 1 or 2, it may not be possible to use same option for reference decoder. The method of defining requirement is try to align results from different companies as much as possible. if option 1 and option 2 were chosen, it would not be possible to define corresponding performance requirements, e.g., PMI reporting requirements based on absolute throughput and relative throughput, due to potential very large gain difference based on reference decoders among UE/infra vendors, which can be seen from simulation results in section 2.2. However, option 3 with fully specified decoder and option 4 with partially specified decoder, could be used to decide reference decoder even if test decoder is based on option 1 or 2.
If test decoder is based on option 3 or 4, it would be straight forward to use same option for reference decoder for defining requirements.
Proposal 3: Fully specified and partially specified options, i.e., option 3 and/or option 4, are used as baseline for RAN4 to specify reference model for defining requirements for different use cases for both 1-sided model and 2-sided model.

2.4	Testing aspects for 2-sided framework 
For 2-sided AI/ML model tests, it was agreed that test decoder/encoder is to be used in UE conformance tests and gNB conformance tests, respectively. Clarifications and pros/cons analysis were discussed and about half of them have been agreed. In this part, further analysis on pros/cons/feasibility and clarification for the 4 options will be done. 
What are needed in Option 3 and Option 4
Some aspects of Option 3 and Option 4 have been agreed in R18 SI [1].
	Option 3 target is that a single decoder defined in the specifications for at least a single test for any DUTs. 
For option 4, the following aspects should be considered
· TE vendor should be able to develop the decoder based on the specifications
· Test repeatability should be ensured (variation among TE vendor implementations should be bound)
· Other vendors should also be able to develop such a decoder and which can deliver similar performance
· Interoperability should be ensured based on the parameters that need to be specified
· Parameters that need to be specified are FFS
· Candidate parameters/conditions that may be considered for defining test decoder include
· Training data set for TE decoder training
· Model structure (Activation function is included in the model structure)
· Performance parameters for the TE decoder (e.g. cosine similarity, loss function, etc)
· Maximum FLOPs allowed for the test decoder
· Maximum number/size of model parameters
· Compression ratio of decoder (output size/input size)
· Quantization level
· Other parameters are not precluded and to be further discussed. 
· Note: Feasibility of definition of parameters needs further investigated.
Option 4 target is that a single decoder implemented by each TE vendor will be enough for at least a single test for any DUTs. TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. If this is found infeasible, another option in which TE vendors need to collaborate with DUT/infra vendors to implement the decoder could be considered.


Option 3 is clear that all the necessary information of decoder is defined in the specification. To fully specify the decoder, model structure would need to be specified first. Then based on the specified model structure, the model parameters can be further specified.
Proposal 4: In Option 3, model structure needs to be specified first, and then model parameters can be further specified.
For Option 4, it is seen that from our analysis in Section 2.2, model structure (back-bone, hyper-parameters, e.g., number of layers, etc) also has significant performance impact even if complexity of model (in terms of FLOPS) are similar. If model structure is not specified, we can not achieve the target that TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. Model backbone and model complexity (e.g., model (parameter) size and FLOPs) could be aligned first, which will facilitate the discussion of model structure.
Model structure is clearly not enough for Option 4. The training dataset, in which each sample contains the input and output of encoder/decoder (i.e., the channel information and the encoded bits), is also needed for different vendors to obtain similar test decoder.
Proposal 5: In Option 4, at least model structure and training dataset need to be specified. To make alignment of model structure, model backbone and model complexity (e.g., model (parameter) size and FLOPs) could be aligned first.
Our suggested reference model structure for encoder and decoder are provided, which can be used as a starting point. Both CNN and Transformer are considered. The suggested models are provided as examples and the model hyperparameters could be adjusted to reduce the model complexity.
[image: ]
Figure 2.4-1. Suggested model structure for the encoder of CSI compression (CNN).

[image: ]
Figure 2.4-2. Suggested model structure for the decoder of CSI compression (CNN).

[image: ]
Figure 2.4-3. Suggested model structure for the encoder of CSI compression (Transformer).
[image: ]
Figure 2.4-4. Suggested model structure for the decoder of CSI compression (Transformer).
Then we have the following proposal.
Proposal 6: The suggested model structures in Figure 2.4-1 to 2.4-4 for test decoder/encoder could be used as a starting point

Test decoder pros& cons analysis
Our considerations on the table of the comparison of the four options of test decoder are provided in the following.
For “Supported training collaboration type between DUT and decoder provider”, it seems that this aspect is just for training before test and seems to have no obvious impact on the test. Then this aspect does not need to be discussed, and we have the following proposal:
Proposal 7: “Supported training collaboration type between DUT and decoder provider” can be removed from the table of the comparison of the four options of test decoder, since this aspect is just for training before test and seems to have no obvious impact on the test.
Other aspects would need further discussion. Updated summary is provided in Table 2.4-1.



 5 / 8

[bookmark: _Ref158298535][bookmark: _Ref158298530][bookmark: OLE_LINK17]Table 2.4-1 Comparison of the four options of test decoder
	 
	Option 1: DUT provides decoder
	Option 2: Decoder not from DUT and Spec
	Option 3: Full decoder specification in standard
	Option 4: partially specified decoder

	Clarification of options

	Source of the test decoder
	DUT vendor
	Decoder vendor (infra vendor in case of testing UEs)
	RAN4 specifications
	TE vendor, decoder developed based on RAN4 specifications

	Source of decoder training data
	Up to DUT vendors (no need to be specified)
	· Up to decoder implementer (infra vendor)
	Not needed, decoder fully specified (used as part of the RAN4 procedure to specify the decoder)
	FFS
· Could be specified depending on how Option 4 will be defined

	DUT vendor knowledge of the test decoder
	Full knowledge
	No or partial or enough or full knowledge based on alignment with infra vendors or specifications
	Full knowledge based on the specifications
	Partial knowledge – based on RAN4 specification

	[bookmark: _Hlk157525608]Supported training collaboration type between DUT and decoder provider (source of training data should be consistent with the collaboration type)
	Up to DUT vendor (All training collaboration Type 1/2/3)

	Up to infra vendor (All training collaboration Type 1/2/3)

	Up to RAN4 procedure to specify the decoder
	Up to TE vendor (All training collaboration Type 1/2/3)

	Test decoder performance verification procedure at TE
	Need to ensure that decoder performance is not degraded (as intended by the decoder provider) on the TE
	Need to ensure that decoder performance is not degraded (as intended by the decoder provider) on the TE

Need to ensure that decoder performance is good enough to enable a DUT that meets the minimum requirements to pass the test
	Not needed as long as the standardized model implementation can be similar enough between TE vendors
	Not needed as long a the model implementation can be similar enough between TE vendors

	Feasibility of test decoder verification procedure
	FFS
	FFS
	FFS
	FFS

	Pros/Cons analysis

	Reflection on the real deployment (likelihood that test decoder would be used
	Low
There could be large performance mismatch with field performance due to mismatch between test decoder and field decoder implemented by infra vendors.
Depends on training collaboration type and/or training dataset, the decoder mismatch would be alleviated.
	Medium
Could reflect the performance in the field if network vendors use same or similar decoder in the field as the test decoder. 
Since test decoder is designed for minimum requirement, network vendors may use more powerful decoder with better performance in the field.
	Low/Medium
Could reflect the performance if the test decoder(s) is generated from the well-designed datasets that could reflect real deployment.
There could be large performance mismatch if the training dataset is not realistic. UE may have to implement an additional encoder only for the tests.
	Medium
Could reflect the performance if the test decoder(s) is generated from the well-designed datasets that could reflect real deployment.
Could reflect the performance if infra/UE vendors consider the partially specified test decoder as reference for implementation.

	TE requirements to deploy the decoder (e.g., training, complexity, interopereatbility)
	Higher than Option 3/4 in terms of that maybe more than one decoder is implemented by TE

Lower thank Option 3/4 in terms of that no training at TE is required
	Higher than Option 3/4 in terms of that maybe more than one decoder is implemented by TE

Lower thank Option 3/4 in terms of that no training at TE is required
	Lower complexity than Option 1/2 in terms of that only one decoder is implemented by TE

Lower thank Option 4 in terms of that no training at TE is required
	Lower complexity than Option 1/2 in terms of that only one decoder is implemented by TE

Higher than Option 3 in terms of that training at TE is required 

Note: How to ensure compatibility/ interoperability between TE and DUT needs further study

	Specification effort (defining test decoder and requirements)
	Low
	Low
	Highest

RAN4 needs to standardize the entire decoder
	High

RAN4 needs to study and may decide on what to standardize

	Confidentiality/ IP issues in the testing procedure (after specs are published)
	Yes 
DUT vendor might have to expose some aspects of the design to the TE vendor
Depending on means used to share test decoder, TE vendors might require integrating source code from third party, which could even require licensing
	Yes
Decoder vendor might have to expose some aspects of the design to the TE vendor
Depending on means used to share test decoder, TE vendors might require integrating source code from third party, which could even require licensing
	No
	No

	Applicability to different scenarios/conditions/ configurations
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.

	Complexity of testing for the ecosystem
	Testing the encoder at DUT

Higher than  Option 3/4 

Need for interaction between TE vendor
	Testing the encoder at DUT

Higher than Option 3/4 

Testing complexity higher also than Option 1
	Testing the encoder at DUT

Low – no need for interaction between TE vendors and other parties
	Testing the encoder at DUT

Low – no need for interaction between TE vendors and other parties

	Complexity of verifying/testing the test decoder
	Higher than Option 3/4 

FSS compared to Option 2
	Higher than Option 3/4 

FSS compared to Option 1
	Low
	Low

	Complexity of deploying for the ecosystem
	High
Offline co-engineering between TE vendor and UE vendors may be needed depends on model format.
TE needs to select different test decoder for different DUT, which may be based on DUT declaration.
All UE vendors should develop its own test decoder.

	High
Offline co-engineering between TE vendor and infra vendors may be needed depends on model format. 
How would TE select the corresponding test decoder for a UE under test or would the DUT pass test with all the test decoder from different network vendors?
Whether should all infra vendors provide test decoder?
DUT may need to be tested against one or multiple test decoders provided by different infra vendors.
	Low
TE only needs to implement the test decoder.
DUT may consider the test decoder for encoder implementation

	Low/Medium
TE only needs to train and implement partially specified test decoder.
DUT may consider the test decoder for encoder implementation


	Friendly to STOA (state of the art) model test / Forward compatibility when new AI models are invented
	Yes
	Yes
	No
	Yes

	Relationship with reference decoder/encoder (used by RAN4 to define the performance requirements) for defining the requirement
	A different reference decoder (e.g., based on option 3 or option 4) for defining requirements.
	A different reference decoder (e.g., based on option 3 or option 4) for defining requirements.
	Same reference decoder as test decoder for defining requirements.
	Same reference decoder as test decoder for defining requirements.

	Whether model transfer/delivery is needed during the test procedure
	FFS
	FFS
	FFS
	FFS




After the above discussions, we have the following proposal.
Proposal 8: Take into consideration the summary of 4 options for testing of 2-sided model in Table 2.4-1.

2.5	Testing aspects for CSI prediction
In R18, we have the following agreement of CSI feedback enhancement, which can be used for both CSI prediction and CSI compression [1].
	Both time domain CSI prediction and spatial-frequency domain CSI compression are considered. 
PMI reporting framework (follow PMI vs. random PMI test, use of γ as criteria, etc.) is taken as starting point for CSI related tests. Other metrics/framework is not precluded. 
For metrics for CSI requirements/tests, the following test metrics are identified:
· Option 1: Throughput/relative throughput
· Option 2: SGCS, NMSE
· Option 3: CSI prediction accuracy
Option 1 should be used as baseline. For option 3, further discuss is needed on the feasibility to define the CSI prediction accuracy in WI. For metrics for CSI monitoring, further discussion is needed in WI.


Based on the agreement, throughput/relative throughput should be used as baseline. The γ value of predicted PMI vs random PMI can be used in the test. To show the performance gain of AI based CSI prediction, the γ value of AI based CSI prediction would be different than the γ value of previous non-AI test. For CSI monitoring, since SGCS is the direct KPI of AI/ML model, SGCS may be studied as monitoring KPI along with throughput/relative throughput. One possible solution is that UE reports current channel information and predicted channel information, and then TE can calculate SGCS between the current channel of current reporting and the predicted channel of previous reporting.
Proposal 9: Throughput/relative throughput based solution would be the baseline for CSI prediction. The γ value of predicted PMI vs random PMI can be used in the test, which would be different than the γ value of previous non-AI test.

2.6 Consideration on post-deployment
When AI/ML models have passed the RAN4 testing and deployed in the real field, the UE performance and behavior can be guaranteed. While for AI functionality, to achieve better performance, Model update/retuning may be used for deploying a new model. However, currently no test would be conducted for the new models. There may be performance degradation if the new model is not well verified. Since the 2-sided use case needs the close collaboration of two sides, this post-deployment degradation would have much larger impact on 2-sided CSI compression, compared to 1-sided use cases.
Based on the discussion in SI study, model monitoring was suggested to be the applicable way to verify performance of the new model, especially if the monitoring tests are specified. Apart from this, other feasible methods are not excluded if it can better estimate whether the reference performance of model can meet expectations if the parameters of the model have been updated. In WI stage, RAN4 needs further studies to consider whether and how to test the post-deployment AI/ML feature.
Observation 3: Post deployment performance may be verified by model monitoring.
Proposal 10: RAN4 to further study whether and how to test the post-deployment AI/ML feature for ensuring the performance in Rel-19 stage.

3. Summary
In this contribution, we provided our views on testability aspects for CSI compression and CSI prediction. Based on above analysis, following proposals and observations are present.
Observation 1: Model structure (back-bone, parameters, e.g., number of layers, etc) also has significant performance impact even if complexity of model (in terms of FLOPS) are similar. 
Observation 2: RAN4 testability study should consider all the relevant parts for defining performance requirements and testing.
Proposal 1: RAN4 to define reference model for defining performance requirements for one-sided model.
Proposal 2: In 2-side model use case, both reference encoder and reference decoder are introduced for defining performance requirements for UE side encoder.
Proposal 3: Fully specified and partially specified options, i.e., option 3 and/or option 4, are used as baseline for RAN4 to specify reference model for defining requirements for different use cases for both 1-sided model and 2-sided model.
Proposal 4: In Option 3, model structure needs to be specified first, and then model parameters can be further specified.
Proposal 5: In Option 4, at least model structure and training dataset need to be specified. To make alignment of model structure, model backbone and model complexity (e.g., model (parameter) size and FLOPs) could be aligned first.
Proposal 6: The suggested model structures in Figure 2.4-1 to 2.4.4 for test decoder/encoder could be used as a starting point
Proposal 7: “Supported training collaboration type between DUT and decoder provider” can be removed from the table of the comparison of the four options of test decoder, since this aspect is just for training before test and seems to have no obvious impact on the test.
Proposal 8: Take into consideration the summary of 4 options for testing of 2-sided model in Table 2.4-1.
Proposal 9: Throughput/relative throughput based solution would be the baseline for CSI prediction. The γ value of predicted PMI vs random PMI can be used in the test, which would be different than the γ value of previous non-AI test.
Observation 3: Post deployment performance may be verified by model monitoring.
Proposal 10: RAN4 to further study whether and how to test the post-deployment AI/ML feature for ensuring the performance in Rel-19 stage.
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