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1. Introduction
[bookmark: _Hlk130824939]Rel-19 Work Item (WI) was approved on the Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface (WID in [1]). The application of AI/ML techniques to NR air interface has been studied in FS_NR_AIML_Air.
This work item provides normative support for the general framework of AI/ML concerning air interfaces. It also enables the implementation of recommended use cases outlined in the previous study. Furthermore, several study objectives within this project aim to address outstanding issues identified during the study, with the goal of enhancing understanding in preparation for future normative effort.
The current agreements on how to perform the RAN4 study on general issues for AI/ML, and issues related to interoperability/testing have been captured in the latest TR [2]
In this contribution, we provide our viewpoints on General Aspects on AI/ML for NR Air Interface. 
2.1 Framework for Defining Requirements in Tests for AI/ML 
In previous meetings the various options for providing the test encoder/decoder for CSI compression and implementation at the TE side have been discussed [2]
Traditionally, for meeting legacy demodulation requirements under RAN4 work, a reference receiver, such as the MMSE or advanced receiver is first established. Introducing a reference encoder and decoder could play analogous roles in shaping the requirements for the UE side model. 
From RAN1 evaluation results there are many implementation factors that could influence the AI/ML model performance. Diverse company-specific assumptions and implementations regarding model structure and parameters often lead to significant performance variations. To ensure consistency across companies' results, incorporating a reference AI/ML decoder model becomes critical in defining performance benchmarks for the UE side encoder. Likewise for two sided models, for deriving gNB decoder performance, introducing a UE side reference encoder might be necessary. Absence of a reference model could hinder result alignment and requirement derivation. Establishing requirements for the UE encoder mandates defining both the reference encoder and decoder. Relying solely on one side's reference model might pose challenges in deriving requirements due to the complexity in aligning different company results.
To define the requirements for the DUT testing framework for a 2-sided model we will need to introduce the reference encoder/decoder which could be different than the test encoder/decoder. Specifying a reference model for a 1-sided model will also be needed. 
The same principles for defining a reference AI/ML model apply for the one-sided models for the BM and CSI prediction and AI/ML positioning uses cases.
Proposal 1: RAN4 should study the specification of reference AI/ML models for defining performance requirements for 1 and 2-sided models 

For two sided models the options available for determining the test encoder can also serve in deciding the reference encoder. The purpose of defining requirements aims to align outcomes across different companies as closely as possible. Options 3 (fully specified encoder/decoder) and option 4 (partially specified encoder/decoder) for the CSI use case could be employed to determine the reference encoder/decoder.

Regarding option 4 for determining the reference encoder/decoder, RAN4 could investigate and define the critical model parameters that abstract the AI/ML model performance and reduce the variations across different implementations. (e.g. type of AI/ML backbone structure, complexity of model architecture, dropout layers, etc). Moreover, since the performance of the AI model is dependent on the training data a standardized data set will be required to develop the reference encoder/decoder for achieving similar performances. 

Proposal 2: RAN4 should consider option 3 (fully specified) and option 4 (partially specified) for defining a reference encoder/decoder. Regarding option 4, RAN4 should investigate the specifications of the relevant AI model parameters. Additionally, it should specify a training dataset to ensure alignment in performance results.
2.2 RAN4 performance testing goals
As discussed in previous RAN4 meetings and captured in TR 38.843, the testing goals are described with the following options:
For testing goals, Option 1 and/or Option 2 below will be selected depending on the test
-	Option 1: The testing goal is to verify whether a specific AI/ML model (if model identification is possible)/functionality can be conducted in a proper way.
-	FFS how to define the specific AI/ML model (e.g., a model captured in RAN4 spec as baseline) 
-	FFS how to define that the model is properly conducted (e.g., by defining AI/ML dedicated performance/core requirements associated with model outputs)
-	Option 2: The testing goal is to verify whether the minimum performance gain of AI/ML model (if model identification is possible) /functionality/feature can be achieved for a static scenario/configuration. 
-	FFS how to define a static scenario/configuration (e.g., by defining a related testing dataset based on channel models in TR 38.901)
-	FFS whether and how to define non-static specific scenarios/configurations
The last paragraph may suggest that the distinction between the two options relate to whether it involves model ID-based Lifecycle Management (LCM) or functionality-based LCM. Additionally, it can also be inferred that the method of model transfer, whether via 3GPP air interface signaling or without air interface signaling, could influence the applicability of these options. Those factors could determine which option is suitable in different contexts. For example, if the UE-part model under test is transferred by NW as in type 1 training, then UE’s responsibility would be to properly receive and conduct the model, thus making option 1 more applicable. Another interpretation would be that option 1 mainly focuses on the performance of AI/ML models whether option 2 is to verify the performance gains of AI/ML models from the system perspective. 
Observation 1: Both options 1 and 2 are pertinent to an assessment of performance.  
Proposal 3: RAN4 to further discuss if both Option 1 and Option 2 should be considered for RAN4 testing purposes and to explore the primary contexts in which they are applicable and the differences between them or discuss if it would be more applicable to combine these two options with another composite testing goal that encompasses both requirements in Option 1 and 2 
2.3 Generalization/scalability aspects
2.3.1 Requirements related to generalization 
The following agreement has been captured in TR 38.843: 

The goals of generalization test are to verify whether the minimum level of performance of AI/ML functionality/model can be achieved/maintain under the identified scenarios and/or configurations, while the performance won’t be significantly degraded in other scenarios and/or configurations. The following aspects should be considered for generalization/scalability related testing:
-	details about the scenarios and/or configurations for test and the corresponding AI/ML models/functionality
-	what the minimum level performance for each identified scenario and/or configuration is
-	what the significant degradation for other scenarios and/or configurations is
In general, the concept of generalization pertains to an AI model's capacity to perform inference for data beyond its training dataset. 
Various approaches for achieving good performance across different scenarios/configurations/sites are studied, including:
-	Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
-	Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
-	Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.
-	Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.
We should distinguish between the goals of generalization ability of the AI/ML functionality (in real deployment) from the generalization performance of the AI/ML model in the framework of RAN4 requirements. As discussed above, the methods that can be employed for the first case are: (1) “self-generalization” ability, (2) model switching and (3) model update. However, from the framework of RAN4 requirements UE should only rely on its “self-generalization” ability.
Within the framework of RAN4, specifications need to remain indifferent to the specifics of the training set or the model being employed. The primary goal of RAN4 requirements is to guarantee that the UE delivers a minimum expected performance in pertinent scenarios where AI functionality is utilized. As long as the UE meets the performance criteria outlined by RAN4, the particulars of its training process or the specific AI model it employs should hold no significance to RAN4.

Observation 2:  In the context of RAN4 requirements, it is essential that generalization pertains to the capability of AI functionality to deliver a minimum expected performance across all anticipated scenarios, irrespective of the training process or the model being employed.

In order to define RAN4 requirements, it is necessary to identify the range of scenarios for which the UE is expected to achieve a minimum performance. This will be use-case dependent. We shall also consider the performance under other scenarios. RAN4 can verify the performance or minimum level of performance for identified/reference scenarios, but a significant degradation shall not be occurred in other scenarios/configurations.  
Deterministic algorithms typically exhibit smooth performance changes as scenarios vary. However, with AI, it's essential to determine whether performance deterioration transitions smoothly with scenario changes or if abrupt changes occur.  They also often operate in a blackbox manner lacking interpretability and therefore, could be challenging in real-world scenarios like cellular networks where network operators may want to peek inside the algorithms when things go wrong. If performance degrades smoothly, similar requirements and test points as non-AI systems may suffice. Conversely, if abrupt changes are possible across scenarios, ensuring consistent performance across all scenarios becomes more challenging.
It is important to establish a lower bound for determining whether performance is degraded or not, as well as what constitutes significant degradation across various scenarios and configurations. The behavior of AI functionality can vary depending on the specific use case and conditions. Therefore, a performance margin is necessary to assess whether significant degradation has occurred. To confirm the generalization of the AI model, we should firstly identify certain reference scenarios and verify the performance requirements on those. The margin of deterioration for other scenarios should be determined based on the known performance for the reference scenarios. This allows us to establish rules for assessing and ensuring that significant degradation doesn’t occur.
Proposal 4: A use-case and scenario dependent deterioration performance margin shall be specified for assessing if significant degradation has occurred.
2.3.2 Testing for generalization 
The necessity and feasibility of defining requirements or tests to verify the generalization of AI/ML is captured in the latest TR.
As for the handling of generalization tests, the following option is considered as baseline:
Signalling based LCM procedures and performance monitoring are considered in dedicated test cases and are excluded in tests verifying generalization. RAN4 may define multiple tests with different conditions. In each of the test, TE configures the same specified UE configuration, and therefore the same specified UE configuration is tested under different conditions to verify its generalizability. (environment differs in each test but not changing dynamically during the test)
-	Specified UE configuration includes functionality and/or model ID if defined
It is clear from the above that RAN based LCM is not part of the generalization performance test.
The UE could be configured with a particular functionality that is linked to a tuple {(sub) use case, scenario, configuration} for functionality-based testing or with a model ID.
There is some ambiguity on whether the UE can independently switch/finetune models for different scenarios/configurations for the generalization tests.
Consider the figure below (Fig 1). UE 1 employs a single model and its performance degrades as the configuration/scenario changes. UE2 has a worse generalization performance but it could switch models as the configuration/scenario diverges from nominal. UE 2 model 2 can achieve better performance in those scenarios. The dotted blue line indicates the envelope of UE 2 generalization performance which is better then UE 1 for all configurations after point C.
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Fig. 1: Generalization Performance when UE performs autonomous model switch

[bookmark: _Toc149903857]According to the following paragraph in the TR, the UE could autonomously switch models without informing the network.:
-	Functionality/model selection, activation, deactivation, switching, and fallback operation.
-	Including: Decision by the network (either network initiated or UE-initiated and requested to the network), decision by the UE (event-triggered as configured by the network, UE’s decision reported to the network, or UE-autonomous either with UE’s decision reported to the network or without it)
Proposal 5 RAN4 should discuss if UE can autonomously perform LCM to switch or update/finetune models during generalization tests and if this procedure is transparent 
2.3.3 Scenario/configuration specific Models
When a single model cannot generalize well to multiple scenarios/configurations, scenario/configuration specific models could be employed as described in the following paragraph in the TR: 

Scenario/configuration specific (including site-specific configuration/channel conditions) models may provide performance benefits in some studied use cases (i.e., when a single model cannot generalize well to multiple scenarios/configurations/sites).
-	At least, when UE has limitation to store all related models, model delivery/transfer, if feasible, to UE may be beneficial, at the cost of overhead/latency associated with model delivery/transfer.
-	Note: On-device Finetuning/retraining, if feasible, of a single model may be an alternative to model delivery/transfer.
-	Note: a single model may generalize well in some studied use cases.
-	Note: Model transfer/delivery to UE may also face challenges, e.g., proprietary issues /burdens in some scenarios
Observation 3: On device fine tuning retraining could be beneficial to model delivery/transfer to reduce overhead/latency

Proposal 6: RAN4 to discuss the practicality of formulating a framework that facilitates on-device fine-tuning. The focus will be on exploring the feasibility of creating a dynamic and site-specific approach to online training and fine-tuning.

Observation 4: Having a different AI/ML model for each different Scenario/configuration could increase the UE complexity and storage requirements as well as the overhead of delivery/transfers and the associated overhead/latency.
It would be more advantageous to employ a smaller set of “super models” with enhanced generalization capabilities. To enhance the generalization aspects of an AI/ML we could consider the following options:
· Train the AI/ML model with a diverse dataset that covers multiple Scenario/configurations 
· Increase the number of AI/ML input channels with assistance/side information. The assistance/side information could indicate some information on the radio conditions (high/low SNR, LOS/NLOS conditions, delay spread, etc) or on the specific configuration (the physical angles of setB in BM, the configuration of the grid of beams in terms of wide/narrow beams, information of antenna spacing, etc)

The concept of the AI/ML super model is shown in the figure below. The AI/ML super model with assistance/side information could ideally alleviate the need of having multiple AI/ML models because it can self-generalize with the provision of side information. Of course, the generalization ability of the super model will be limited, but the objective would be to minimize the number of models required to address the majority of scenarios/configurations compared to the number of "simple" AI/ML models needed for that purpose.
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	Fig. 2: AI/ML Super Model with assistance/side information

The notion of a "super-model" can be likened to a collection of models, where each model within the group possesses a shared structure but varies in terms of input/output configurations or utilizes different pre/post-processing techniques.
Proposal 7 RAN4 should investigate the options for enhancing the generalizability of AI/ML models by providing the appropriate assistance/side information and discuss the feasibility of training with diverse datasets  
2.4 Principles on the definition of requirements
For the definition of AI/ML requirements, the following cases related to legacy performance should be considered 
-	For the cases with the existing legacy performance 
-	Take the legacy performance as baseline for existing use cases/procedures/functionalities /measurements that are to be enhanced by AI/ML based methods
[bookmark: _Hlk149569778]-	Further study may be needed on what is baseline performance in conditions different to the requirement condition but within the expected range of operation.
-	New or enhanced performance requirements/tests could be considered for existing use cases/procedures/functionalities/measurements that are to be enhanced by AI/ML based methods
-	For the cases without the existing legacy performance
-	New performance requirements/tests could be considered for the use cases/procedures/functionalities/measurements that are carried out or are to be enhanced by AI/ML based methods
For the legacy performance baseline we would need to clarify/agree that the side conditions of the testing procedures (e.g. range) should remain the same for legacy and AI/ML methods. 
Proposal 8 RAN4 should clarify/agree that the side conditions of the testing procedures should remain the same for legacy and AI/ML methods.
2.5 Requirements for LCM (Performance Monitoring)
As agreed in RAN4#107, RAN4 should study how/whether RAN4 core requirements could be defined for model monitoring in LCM. For the model monitoring (in which the performance of AI/ML model inference and/or the other environment conditions are under monitoring), it is similar to radio link monitoring (RLM, in which the downlink radio link quality on the RLM-RS resources). 
In the CSI compression sub-use case, model monitoring can occur at the UE side. This approach allows for more accessible perception of CSI and other conditions, aiding the purpose of model monitoring. Metrics derived from this monitoring may include model inference accuracy, system performance, data distribution, and more. Additionally, it's feasible to derive monitoring metrics using the pairing of Encoder/Decoder, albeit with potential added complexity for the UE. These various model monitoring schemes are listed as possible performance monitoring methods outlined in TR38.843
	 Performance monitoring
The following metrics/methods for AI/ML model monitoring in lifecycle management per use case are considered:
· Monitoring based on inference accuracy, including metrics related to intermediate KPIs
· Monitoring based on system performance, including metrics related to system performance KPIs
· Other monitoring solutions, at least the following 2 options.
· Monitoring based on data distribution
· Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or SNR, delay spread, etc.
· Output-based: e.g., drift detection of output data
· Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE
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Description automatically generated]Fig. 3: Illustration of model monitoring for CSI compression and BM sub-use cases: 

The inference output becomes part of the input for model monitoring. Using this data, the monitoring operation evaluates KPIs (e.g., SGCS) between the monitoring data and the inference output to assess the model's performance. This is shown in Fig 3 for CSI compression and BM sub-use cases. This evaluation will influence subsequent processes like model retraining or transfer/delivery requests.
The computations of the model monitoring metrics in UE will result in additional complexity. Therefore, the frequency of performing monitoring metric computations should be kept low. Therefore, RAN4 should investigate the requirements about the frequency of invoking the monitoring procedure per use case. Moreover, the inputs of the model monitoring consist of model monitoring input and inference output may not be available at the same time. For example, as shown in Fig 3 for BM sub use case, the inference output (RSRPs of the best beam (pairs) is available at time t1. The top K beams (pairs) will need to be signalled from UE to the NW. Following this, the network transmits these specified beams to the UE, where measurements are conducted, without the involvement of AI/ML techniques. The RSRP of those measurements will serve as the model monitoring inputs and become available at time t2. For model monitoring metric computations there should be an investigation on the latency requirements regarding the availability of model monitoring input data (setting a bound on the timing difference t2-t1)  
Model monitoring plays a pivotal role in ensuring the performance of AI/ML model inference. This is particularly crucial because the generalization aspect is commonly acknowledged as a significant challenge in AI/ML operations. Defining thresholds for abstracting system performance will be crucial for model monitoring to ensure consistent performance. If, for example, a threshold such as SGCS above 0.8 or a specific dB RSRP prediction accuracy (in BM) is indicative of better performance, introducing a tolerance margin to this criterion proves beneficial. This approach assists in the assessment of KPIs and aids in the accurate determination of model performance tailored to specific use cases. Moreover, the size of the measurement (number of samples) may need to be specified for obtaining a reliable monitoring result. 
Proposal 9: RAN4 shall define RAN4 core requirement for performance monitoring tests based on RAN1/2 defined monitoring metrics/methods for particular (sub-)use case 
Proposal 10: RAN4 shall consider the latency requirements for model monitoring input data as well as the establishment of tolerance margin requirements for the specified KPIs for model monitoring per use case
In the scenario where the model monitoring functionality is located within the NW, the NW calculates monitoring metrics using RSRP values reported by numerous UEs. This setup can be considered as cell-level Beam Management (BM) model performance. The AI/ML model located at the NW may detect failures for a portion of UEs.
Proposal 11: FFS on how to perform cell level BM performance monitoring when the AI/ML model resides at NW
3. Conclusion
In this contribution, we discussed the following observations and proposals for General Aspects on AI/ML for NR Air Interface:
Observation 1: For testing goals, both options 1 and 2 are pertinent to an assessment of performance.  
Observation 2: In the context of RAN4 requirements, it is essential that generalization pertains to the capability of AI functionality to deliver a minimum expected performance across all anticipated scenarios, irrespective of the training process or the model being employed.

Observation 3: On device fine tuning retraining could be beneficial to model delivery/transfer to reduce overhead/latency

Observation 4: Having a different AI/ML model for each different Scenario/configuration could increase the UE complexity and storage requirements as well as the overhead of delivery/transfers and the associated overhead/latency.

Proposal 1: RAN4 should study the specification of reference AI/ML models for defining performance requirements for 1 and 2-sided models 

Proposal 2: RAN4 should consider option 3 (fully specified) and option 4 (partially specified) for defining a reference encoder/decoder. Regarding option 4, RAN4 should investigate the specifications of the relevant AI model parameters. Additionally, it should specify a training dataset to ensure alignment in performance results.

Proposal 3: RAN4 to further discuss if both Option 1 and Option 2 should be considered for RAN4 testing purposes and to explore the primary contexts in which they are applicable and the differences between them or discuss if it would be more applicable to combine these two options with another composite testing goal that encompasses both requirements in Option 1 and 2 
Proposal 4: A use-case and scenario dependent deterioration performance margin shall be specified for assessing if significant degradation has occurred.

Proposal 5 RAN4 should discuss if UE can autonomously perform LCM to switch or update/finetune models during generalization tests and if this procedure is transparent 
Proposal 6: RAN4 to discuss the practicality of formulating a framework that facilitates on-device fine-tuning. The focus will be on exploring the feasibility of creating a dynamic and site-specific approach to online training and fine-tuning.

Proposal 7 RAN4 should investigate the options for enhancing the generalizability of AI/ML models by providing the appropriate assistance/side information and discuss the feasibility of training with diverse datasets  

Proposal 8 RAN4 should clarify/agree that the side conditions of the testing procedures should remain the same for legacy and AI/ML methods.
Proposal 9: RAN4 shall define RAN4 core requirement for performance monitoring tests based on RAN1/2 defined monitoring metrics/methods for particular (sub-)use case 
Proposal 10: RAN4 shall consider the latency requirements for model monitoring input data as well as the establishment of tolerance margin requirements for the specified KPIs for model monitoring per use case
Proposal 11: FFS on how to perform cell level BM performance monitoring when the AI/ML model resides at NW

4. Reference
[1] RP-234039, “New WID on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” 
[2] 3GPP TR 38.843, “Technical Specification Group Radio Access Network;Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface”





























1
image3.png
\'4 e \Y
csl Inference Acguracy,
bits e.g. loss(V.V)
ENC/DEC used for monitoring
Model Monitoring in UE

CSl and Other o
Monitoring Results

Conditions
Predicted
Top K beams (pairs)
RSRP Al@ UE,OP_K
* . f (RSRP MeasUE,,, g’
Pilot beams *. E thnt')ansmlts
set B est beams
*  —
* RSRP MeasUEmp_K
* Model Monitor l
t1 Inputs  t» Monitoring Results
< >

Latency




image1.png
Generalization Performance

Performance UE 1

UE 2/ model composite

Ll
*e,
*y
-y

UE 2/ model 2

é Configuration/Scenario




image2.png
Scenario/Configuration 1

Scenario/Configuration 2

Input
Input

Side information on
Scenario/Configuration

Scenario/Configuration N
~ ' /




