Page 1

3GPP TSG-RAN WG3 Meeting #66
R3-093325
November 9-13, 2009

Jeju, Korea
Agenda item:
12.3
Title:
RACH optimization issues
Source:
Samsung, ZTE, Motorola, CMCC, CATT, ETRI, Ericsson, CATR
Document for:
Discussion and decision
1 Introduction
Based on the RAN2 discussion [1][2][3], the PRACH resources including frequency and root sequences used between neighbour cells can’t be all the same. Otherwise, interference and RACH collisions problems will be raised. Conflict with SON RO where eNBs use the same preambles and the probability of preamble collisions therefore increases is less a problem than with PCI conflict between neighbors which results in severe interference on the downlink, but nonetheless should be avoided. Therefore, RAN2 agree the following neighboring cells’ PRACH configuration information should be the input of RACH optimization:
· For proper rootSequenceIndex setting: rootSequenceIndex, zeroCorrelationZoneConfig and highSpeedFlag

· Frequency resource for PRACH: prach-FreqOffset for FDD, both prach-ConfigIndex and prach-FreqOffset for TDD.
To get the neighboring cell’s PRACH configuration listed above, X2 Setup and eNB Configuration Update procedure can be used for these information exchange. While the following issues still need to be clarified. In section 2, the questions will be clarified one by one.
=> Not clear how conflicting RACH configurations are handled by this mechanism (how is converge achieved)?

=> Not clear how the multiple parameters are handled

=> Not clear how it works if some of the nodes do not support the feature
2 Discussion
2.1 How conflicting RACH configurations are handled by this mechanism (how is converge achieved)
Mechanisms to ensure unique SON configuration data among neighbors have been discussed in RAN3 previously in R8 for ANR and PCI. One example that RAN3 has discussed is to assign parameters from a set dedicated for during an initialization period. Once neighbors have been found via ANR, the eNB being initialized can not use the PCIs in use by its discovered neighbors when choosing its unique permanent one. This mechanism of an initial and permanent set can also be used to arrive at unique RACH configuration parameters to use from a permanent set based on knowledge of the neighbors via ANR.
If a conflict is discovered at a different time, then:

Solution 1: It’s the eNB2 that receiving the X2 Setup Request message to check if there is conflict and update its serving cell configuration if yes. The eNB2 include the updated configuration information in the response message.

[image: image1.emf]eNB1 eNB2

X2 Setup Request

Check if there is

conflict with its

serving cell, if there,

update its serving

cell configuration

X2 Setup Response

Solution 2: It’s the eNB1 that receiving the X2 Setup Response message to check if there is conflict and update its serving cell configuration if yes. Then the eNB1 initiate eNB Configuration Update procedure with the new configuration information.

[image: image2.emf]eNB1 eNB2

X2 Setup Request

Check if there is

conflict with its

serving cell, if there,

update its serving

cell configuration

X2 Setup Response

ENB Configuration Update

Solution 3: Both eNB1 and eNB2 can have the checking and optimization function.
Proposal 1: RACH configuration via SON RO as an example might use the ANR function in R8 to discover its unique neighbors and use a method similar to that used for auto PCI configuration also for auto RACH configuration.
Question: Do we need to specify which solution in the spec or leave it for implementation?
2.2 How the multiple parameters are handled
One example is given below.
The eNB that for RACHO (can be eNB1 or eNB2 or both in section 2.1) can first check if the same frequency resources are reused in the two neighbour cells. For FDD, the eNB will know this by compare the prach-FreqOffset in neighbouring cells. For TDD, prach-ConfigIndex and prach-FreqOffset will be used.
· If different frequency resources/time domain resources (for TDD) are used, the eNB will not have preamble collisions with its neighbour even if the same root sequences are used.

· If the same frequency resources /time domain resources (for TDD) are used, the eNB will further check if the same root sequences are the same in these two neighbour cells.
· The eNB can know the used root sequence by rootSequenceIndex, zeroCorrelationZoneConfig and highSpeedFlag. The annex gives one example how to calculate the root sequences by those parameters.
· If the used root sequences are different, the eNB will not have preamble collisions with its neighbour.
· If the root sequences are the same, the eNB would perform the PRACH configuration optimisation, namely a reconfiguration that results in no conflict between neighbours on RACH Requests.

· Alternative 1: change the frequency resources e.g. prach-FreqOffset for FDD, prach-FreqOffset / prach-ConfigIndex for TDD. or

· Alternative 2: change the used root sequences used at one of the eNBs to avoid the conflict. Which eNB change is currently unspecified with automatic PCI selection and the same is proposed for SON RO in R9.
Proposal 2: The above parameter handling can be left for implementation.
2.3 How it works if some of the nodes do not support the feature
If eNB1 don’t support this feature, it will not include the PRACH configuration information in the X2 Setup Request message. The eNB2 can know the peer capability by the implicit method. Similar to automatic PCI SON, the RO PRACH Configuration solution depends on all eNBs supporting a vendor specific algorithm. At boundaries, for example where X2 does not exist or different vendor implementations exist or the RO SON feature is not enabled, there the Operator must manually configure the parameters.
If eNB2 don’t support this feature, the eNB2 will ignore the received PRACH configuration information and not include its served cell’s PRACH configuration in the response message.

So the proposed solution has backward compatibility.
Proposal 3: If some of the nodes do not support the feature the Operator is expected to manually configure PRACH Configuration parameters in order to avoid preamble collisions.
3 Conclusion and proposal
In section 2, all the open issues are clarified. The current propose is just baseline since the exchange of the PRACH configuration information are fundamental necessary.
4 Reference

[1] R3-092708 LS on the input data to choose correct PRACH configuration (Source: RAN2; To: RAN3)
[2] R2-096208 Selection of the proper root sequence index for RACHO, Samsung, Motorola, CATT
[3] R2-096209 Detection of the neighbouring cells’ frequency resources for PRACH, Samsung
[4] TS36.211

Annex

64 RACH preambles normally are derived from one or more of 838 root sequences, from which a cyclic shift value as specified by a Ncs configuration from 0 – 15 as shown in the table_1 is applied. To inform the UE of how to generate RACH preambles, the following information is signaled by RRC:

1) rootSequenceIndex: INT (0..837)

· Indicate the starting root sequence out of 838 root sequences

2) highSpeedFlag: Boolean

· Indicate whether unrestricted set or restricted set is applicable for Ncs value

3) zeroCorrelationZoneConfig: INT (0..15)

· Indicate Ncs configuration index in the table_1, i.e. index for the real value of the cyclic shift separation between consecutive RACH preambles

	
[image: image3.wmf]CS

N

 configuration
	
[image: image4.wmf]CS

N

 value

	
	Unrestricted set
	Restricted set

	0
	0
	15

	1
	13
	18

	2
	15
	22

	3
	18
	26

	4
	22
	32

	5
	26
	38

	6
	32
	46

	7
	38
	55

	8
	46
	68

	9
	59
	82

	10
	76
	100

	11
	93
	128

	12
	119
	158

	13
	167
	202

	14
	279
	237

	15
	419
	-

Table_1: Ncs for preamble generation (preamble formats 0-3)

Figure_1 describes the example of how to make 64 RACH preambles with the signaled information above. Note that multiple root sequences can be used in a cell dependent on the value of Ncs. For example, if zeroCorrelationZoneConfig is signaled as ‘9’ and highSpeedFlag is set as False, 5 root sequences are occupied to generate 64 RACH preambles. Considering the length of the root sequence is 839, the needed number of root sequences in a cell would be ceil (((64 – 1) * Ncs value +1) / 839).

[image: image5.wmf]Root sequence

#

0

Root sequence

#

300

Root sequence

#

301

Root sequence

#

302

……

……

Root sequence

#

837

Root sequence

#

303

Root sequence

#

304

rootSequenceIndex

:

300

Ncs cyclic shifted

sequence

RACH preamble

_

0

(

CS

=

0

)

z

e

r

o

C

o

r

r

e

l

a

t

i

o

n

Z

o

n

e

C

o

n

f

i

g

:

9

h

i

g

h

S

p

e

e

d

F

l

a

g

:

F

a

l

s

e

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

Ncs

=

59

…

…

Ncs cyclic shifted

sequence

Ncs

=

59

RACH preamble

_

1

(

CS

=

59

)

RACH preamble

_

2

(

CS

=

118

)

RACH preamble

_

14

(

CS

=

826

)

Ncs

=

12

Ncs

=

47

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

RACH preamble

_

15

(

CS

=

46

)

RACH preamble

_

16

(

CS

=

105

)

Ncs cyclic shifted

sequence

RACH preamble

_

28

(

CS

=

813

)

Ncs

=

25

...

Ncs

=

8

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

RACH preamble

_

58

(

CS

=

7

)

RACH preamble

_

59

(

CS

=

66

)

Ncs cyclic shifted

sequence

RACH preamble

_

63

(

CS

=

302

)

Figure_1: Generation of 64 RACH preambles

To determine the proper starting root sequence as SON-RACH operation, the root sequences to be used in a cell should avoid the root sequences being used in the neighboring cells if the same frequency resource is reused. Otherwise, interference problem will be raised. For example, according to the figure_1, root sequences #300 ~ #304 should not be used in the neighboring cells.

_1319485626.vsd
�

eNB1

eNB2

X2 Setup Request

Check if there is conflict with its serving cell, if there, update its serving cell configuration

X2 Setup Response

_1319485994.vsd
�

eNB1

eNB2

X2 Setup Request

Check if there is conflict with its serving cell, if there, update its serving cell configuration

X2 Setup Response

ENB Configuration Update

_1233508093.unknown

