3GPP TSG RAN WG3#65

R3-091692
Shenzhen, China, 24th – 28th AUGUST
Agenda Item:
10.3
Souce:

SAMSUNG
Title:

Root Sequence Index information for RACHO
Document for:
Discussion and decision
1. Introduction
Neighbouring cells’ root sequence index information would be used to choose the proper root sequence index of the serving cell [1].
In this document, we would like to see more details on the generation of random access preambles and to see whether rootSequenceIndex information should be sufficient to determine the proper value of the rootSequenceIndex to be used in a cell.

2. Discussion
Random access preambles are generated by using the following RRC signaled parameters.

· rootSequenceIndex: INT (0..837)

· Indicate the starting root sequence (among total 838 root sequences).
· highSpeedFlag: Boolean

· Indicate whether unrestricted set or restricted set is applicable for Ncs value.
· zeroCorrelationZoneConfig: INT (0..15)

· Indicate Ncs, i.e. the cyclic shift separation between the consecutive random access preambles.
· Ncs values according to the zeroCorrelationZoneConfig and highSpeedFlag are shown in the table_1.
	
[image: image1.wmf]CS

N

 configuration
	
[image: image2.wmf]CS

N

 value

	
	Unrestricted set
	Restricted set

	0
	0
	15

	1
	13
	18

	2
	15
	22

	3
	18
	26

	4
	22
	32

	5
	26
	38

	6
	32
	46

	7
	38
	55

	8
	46
	68

	9
	59
	82

	10
	76
	100

	11
	93
	128

	12
	119
	158

	13
	167
	202

	14
	279
	237

	15
	419
	-

Table_1: Ncs for preamble generation (preamble formats 0-3)
Figure_1 illustrates how to make 64 random access preambles using the RRC parameters above. We should note that multiple root sequences can be used in a cell dependent on the value of Ncs. For example, if zeroCorrelationZoneConfig is signaled as ‘9’ and highSpeedFlag is set as False, 5 root sequences are occupied to generate 64 random access preambles. Considering the length of the root sequence is 839, the needed number of root sequences would be (64 – 1) * Ncs / 839.
[image: image3.wmf]Root sequence

#

0

Root sequence

#

300

Root sequence

#

301

Root sequence

#

302

……

……

Root sequence

#

837

Root sequence

#

303

Root sequence

#

304

rootSequenceIndex

:

N

(

assume N

=

300

)

Ncs cyclic shifted

sequence

Random access

preamble

#

0

z

e

r

o

C

o

r

r

e

l

a

t

i

o

n

Z

o

n

e

C

o

n

f

i

g

:

M

h

i

g

h

S

p

e

e

d

F

l

a

g

:

F

a

l

s

e

(

a

s

s

u

m

e

M

=

9

,

i

.

e

.

N

c

s

=

5

9

)

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

Ncs

=

59

…

…

Ncs cyclic shifted

sequence

Ncs

=

59

Random access

preamble

#

1

Random access

preamble

#

2

Random access

preamble

#

14

Ncs

=

13

Ncs

=

46

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

Random access

preamble

#

15

Random access

preamble

#

16

Ncs cyclic shifted

sequence

Random access

preamble

#

28

Ncs

=

26

...

Ncs

=

7

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

Random access

preamble

#

58

Random access

preamble

#

59

Ncs cyclic shifted

sequence

Random access

preamble

#

63

Figure_1: Generation of random access preambles
To determine the proper starting root sequence as SON-RACH operation, the root sequences to be used in a cell should avoid those used in the neighboring cells to avoid interference problem. E.g. root sequences #300 ~ #304 should not be used in the neighboring cells.

Based on [1], currently only the rootSequenceIndex, i.e. the starting root sequence info, was defined as the input parameter. In this case, an eNB cannot know how many root sequences from the starting root sequence are really used in the neighboring cells. As a result, a wrong value can be determined as the rootSequenceIndex to be used in a cell.
Consideration_1: an eNB cannot know how many root sequences from the starting root sequence are really used in the neighboring cells.

One can say consideration_1 would not be an issue if an eNB determined the rootSequenceIndex to be used in a cell based on the worst case assumption, e.g. if a neighboring cell informs its rootSequenceIndex as #N, root sequences from N to (N+M) are excluded as the value of the serving cell’s rootSequenceIndex. Note M is the max number of root sequences to be used regardless of real configured Ncs value.

M would be 64 based on the case Ncs is ‘0’. However, with M=64, we can only distinguish 13 neighboring cells, i.e. 838 (total number of root sequences) / 64. Considering upto 32 neighboring cells’ specific information can be signaled as Measurement Configuration, this approach is not scalable enough.

3. Proposed solution

We think the simplest solution would be that zeroCorrelationZoneConfig and highSpeedFlag should be defined as the input in addition to rootSequenceIndex. Note that they are existing parameters in system information as seen in the section 2. If an eNB knows them, the exact range of root sequences used in a neighboring cell should be also known (just like figure_1).

Proposal_1: In addition to rootSequenceIndex, zeroCorrelationZoneConfig and highSpeedFlag should be the input parameters that would be used to choose the proper rootSequenceIndex.
4. Conclusion
In this contribution, we see more details on the generation of random access preambles. Based on that, we would like to propose that zeroCorrelationZoneConfig and highSpeedFlag in addition to rootSequenceIndex should be the input parameters that would be used to choose the proper rootSequenceIndex. If agreeable, we also would like to reflect the attached TP into 36.902.

5. Reference
[1] TR36.902v1.2.0
E-UTRAN Self-configuring and self-optimizing network use cases and solutions
6. Annex: TP for 36.902
4.7.4.1.2
Input Data

Potential input parameters are (details FFS):

RACH Configuration

Plausible input information for the automatic function may be estimates of access probability, access delay probability, and the PUSCH load.
RACH Transmission Power Control Parameters

Relevant input information for the automatic function may include the access probability and/or access delay probability estimates, and uplink inter-cell interference. Further, since the uplink interference may change on a fast cycle it is beneficial for the automatic RACH optimization function to be responsive and act immediately to changes in interference.

RACH Backoff Parameter

Suitable input information for the automatic function may include the access probability and momentary RACH load.

RACH Preamble Split

Each cell can measure the incoming handover rate. Further, at handover the target cell also sets the "handover failure timer T304", which determines for how long dedicated pre-ambles are locked and this has an impact on the number of dedicated preambles needed.

pRACH Configuration Index, zeroCorrelationZoneConfig, highSpeedFlag and rootSequenceIndex
These input parameters are used to choose the proper rootSequenceIndex for the RACH preambles. These may be useful in avoiding RACH collisions when the same frequency resource gets reused in neighbouring cells, and for calculating the interference caused in the RACH area in an eNB. For the purpose of calculating interference, this may be also done using dedicated preambles as there is no need of reserving additional root sequences for this purpose.
An eNB may need to exchange information over the X2 interface with its neighbors for the purpose of RACH optimisation. An eNB may also need to communicate with the O&M in order to perform RACH optimization.

_1233508093.unknown

