3GPP TSG RAN3#59



R3-080088
Sorrento, Italy 11-15th February 2008
Agenda Item:
10.2.8.a
Source: 
Alcatel-Lucent
Title: 
Uplink forwarding selective retransmission
Document for:
For Discussion and Approval

1 Introduction

The UL forwarding solution has been finalized in the last minutes of RAN3#58. Alcatel-Lucent provided the CR in tdocs xxx.

As part of this solution, the source eNB sends the “list of not to be transmitted SDUs” but some company challenged that this solution works as such and proposed instead the “list of to be transmitted SDUs”.

This paper:

1. shows that the exiting “not to be transmitted solution” works,

2. compares the two solutions.

2 Description
It has been questioned which one of the “list of PDUs to be transmitted” or “list of PDUs not to be transmitted” should be sent from the source eNB to the target eNB

2.1 Comparison of the two solutions
Let’s take again the following example started to discuss over emails:.

The target eNB receives first the IE currently existing in the specification “PDCP SN of the next in-sequence expected UL SDU by the target eNB” which is 4 in this case. It will convert it into the LIS (Last In Sequence see below section 2.2, here equal to “3”) for the bitmap sent to the UE. The UE knows it must start at 4.
Solution 1
List NOT to be transmitted: here 5, 7.
Solution 2

List to be transmitted: here 4,6, 8 ??and 9??

The difficulty with the solution 2 is that the source eNB cannot send the exact list of SDUs to be transmitted because it cannot know if 8 and 9 were ever transmitted in the example. All that it knows is that the last it has received was 7.
Therefore, if selected, the solution 2 would need a modification of the current encoding as a list in the message. It would need to e encoded like:

· list to be transmitted=4, 6

· + number above which all numbers must be transmitted: here number 8. 
Of course, another possibility for solution 2 is to send a simple list like (4,6, 8) but in this case semantic description must be added to explain the special meaning of the element 8 which should be understood as “please send not only 8, but also any number above”. This means that this list is not exactly the “list of to be transmitted SDUs”.
2.2 Bitmap sent to the UE
The analysis of the bitmap also concludes in favour of solution 1. Here-below is the actual bitmap that will be sent to the UE (extract from PDCP specification).

6.2.6
PDCP Control PDU for PDCP status report 

Figure 6.2.6.1 shows the format of the PDCP Control PDU carrying data from the user plane for PDCP status report with a 12 bits sequence number.


[image: image1.wmf]Bit 

1

Bit 

2

Bit 

3

Bit 

4

Bit 

5

Bit 

6

Bit 

7

Bit 

8

...

Bitmap

1

D

/

C

PDU Type

Bitmap

N

LIS 

(

contd

)

LIS

Oct 

1

Oct 

2

Oct 

3

Oct 

2

+

N


Figure 6.2.6.1: PDCP Data PDU format for PDCP status report

6.3.9
LIS

Length: 12 bits

Last in sequence received PDCP Sequence Number.

6.3.10
Bitmap

Length: Variable

The MSB of the first octet of the type "Bitmap" indicates whether or not the PDCP PDU with the SN (LIS + 1) modulo 4096 has been received and, optionally decompressed correctly. The LSB of the first octet of the type "Bitmap" indicates whether or not the PDCP PDU with the SN (LIS + 8) modulo 4096 has been received correctly.

TABLE 6.3.10.1 Bitmap

	Bit
	Description

	0
	PDCP PDU with PDCP Sequence Number = (LIS + bit position) modulo 4096has not been received or optionally has been received but has not been decompressed correctly

	1
	PDCP PDU with PDCP Sequence Number = (LIS + bit position) modulo 4096 has been received correctly and may or may not have been decompressed correctly


Please not also that the following clarification RAN2 CR was discussed:
TABLE 6.3.10.1 Bitmap

	Bit
	Description

	0
	PDCP PDU with PDCP Sequence Number = (LIS + bit position) modulo 4096has not been received, or optionally has been received but has not been decompressed correctly is missing in the receiver.

	1
	PDCP PDU with PDCP Sequence Number = (LIS + bit position) modulo 4096 has been received correctly and may or may not have been decompressed correctly does not need to be retransmitted.


The UE fills the bitmap indicating what SDUs are missing (unset bit - ’0’), i.e. whether an SDU has not been received or optionally has been received but has not been decompressed correctly, and what SDUs do not need retransmission (set bit - ’1’), i.e. whether an SDU has been received correctly and may or may not have been decompressed correctly.

Taking again our example, the bit “1” will be allocated to the numbers 5 and 7,
The bit “0” will be allocated to the numbers 4 and 6 only because source eNB cannot determine that 8 and 9 are missing.
As a consequence the UE, after retransmitting 4 and 6, will determine that it has to send “after 8” because of the 7 which is last received.
The conclusion from the analysis of this bitmap is again that the UE only need to read the bits at “1” (not to be retransmitted) to determine what to send. The bits at “0” are useless. These bits at “1” corresponds to solution 1 above.
Conversely, if the UE reads only the bits at “0”, it cannot determine that it must start at 8 after sending 4 and 6. The solution 2 above doesn’t work alone.
3 Conclusion

This analysis has shown that:
· only solution 1 (list of NOT to be transmitted SDUs) readily works “as such”
· this solution 1 corresponds also to the one selected by RAN2 for the radio bitmap (bits at “1” that does NOT need to be retransmitted),

· of course solution 2 could work with some adaptation (adding a special number which in fact corresponds to the last received).

Since both solutions can work but solution 1 doesn’t need adaptation and is closer to the radio, we propose to confirm solution 1 that has already been captured in the current specification by removing the FFS (see associated CR).


























































































































































































































_1262190923.vsd
Bitmap1


D/C


PDU Type


...


BitmapN


LIS (contd)


LIS


Oct 3


Oct 1


Oct 2


Bit 1


Bit 2


Bit 3


Bit 4


Bit 5


Bit 6


Bit 7


Bit 8


Oct 2+N



