TSG-RAN Working Group 3 Meeting #22

R3-012036
Sophia Antipolis, France, July 2-6, 2001

Agenda Item:
10.1.4

Source:
IC4IC

Title:
PPPmux for IP UTRAN

Document for:
Decision

1 Introduction

This contribution proposes that PPPmux for IP UTRAN shall be a mandatory requirement in the IP UTRAN.

2 Description

2.1 General

The PPPmux subject has been treated in a number of contributions.

PPPmux is a link layer optimisation for small packets (e.g. voice packets) that has been shown in simulations in ‎[1] to give bandwidth gains of more than 10% compared to PPP (only) and more than 30% compared to PPP/AAL5.

Other contributions, such as ‎[2], have raised concerns mainly about system complexity and about multiplexing delay, transmission delays and jitter leading to an overall latency increase. These concerns were shown to be unfounded by ‎[1].

The PPPmux draft’s ‎[3] itself (end of section 2.2) mentions the multiplexing latency and packet error considerations. It declares de packets shouldn’t be too big, which is true anyway for low-bandwidth links.

2.2 System simplicity

‎[3] describes the transmitter and receiver procedures needed.

At the transmitter side a multiplexing process is included after the PPP logic but before the Multilink PPP logic and the actual framing and transmitting functions used on the channel. The PPPmux logic must keep track of the last used PID, maximum subframe length and must also buffer the complete PPPmux frame before transferring it to the framing, CRC calculation and transmitting functions, which are part of PPP anyway. The buffer size is limited by the PPP MRU, i.e., this is not an extra buffer. It is the same buffer needed by PPP anyway. This means there are two extra variables to be remembered. The PPPmux subframes include a length field that must be calculated for each subframe (this can be done by basically copying the IP packets length). Three different criteria to stop the multiplexing process are also described. These criteria are simple length comparisons. In addition to this, timers can be implemented in order to control the additional queuing delay and/or the multiplexed frame size. In a hardware implementation (like the ones existing for AAL2), this is done with a simple counter.

The receiver must first wait for the complete multiplexed frame in order to calculate the CRC. If the CRC is not correct the whole multiplexed frame must be discarded. In addition the receiver must also store the last received PID in order to append the correct PID before sending the subframe to the PPP logic. As there are length fields in the subframes the draft mentions two error cases if the length field of the last subframe exceeds the data remaining in the packet. In these cases only the last subframe is lost.

2.3 Delay considerations

In [1] it has been proposed that one PPPmux packet should contain 10 subframes. If each subframe on Iub is an AMR packet we get 10*[1(Length)+ 4(cUDP/IP)+ 9(FP)+32(AMR12.2)] +4(Flag, PID, CRC) = 464 byte. This packet gives a 1.8 ms transmission delay on an E1 link as the CRC is at the end of the packet. One PPP-packet is 4+9+32+4 = 49bytes, which gives 0.2ms delay on an E1.

The total average delay for each subframe in the PPPmux packet in the example is going to be X (where X is determined by the PPPmux timer, which works exactly like AAL2’s CU_Timer_) + 1.8ms. X comes out of the 7ms reserved in the Delay Budget for the Access Stratum ‎[4] for Multiplexing and De-multiplexing Delay (TN1Iub), while 1.8ms comes out of the Media Delay (TN2Iub), which is much less than the 4.8ms presented in ‎1

 REF _Ref518371901 \r \h
‎[4]’s example.

2.4 Simulation Results

(from ‎[6])

[image: image1.wmf]Average overhead

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

30

50

70

90

110

130

150

170

#users

Average PPP&HDLC overhead

MRU = 100 bytes

MRU= 200 bytes

MRU= 300 bytes

MRU= 500 bytes

PPP without

multiplexing

This graph shows that the average overhead for PPP(mux) and HDLC goes from 9.5% for PPP to 7% for PPPmux with an MRU of 300 bytes if the link is fully loaded with AMR-packets. Overhead is defined here as the size of PPP(mux) and HDLC headers divided by the size of the PPP frame. Note, that the overhead gain is proportional to the amount of AMR-packets in the link, since data packets are not multiplexed. Considering 80% voice and 20% data a very likely scenario means that PPPmux still gives many percents of bandwidth gain if you mix small packets with larger packets that do not use PPPmux.

2.5 Conclusions

The advantage of bandwidth efficiency for PPPmux indeed outweighs its disadvantages. PPPmux needs to be included as a mandatory requirement in UTRAN, where narrowband links are commonly used and delay must be carefully monitored.

3 Proposals

1. Add section 2 to the IP UTRAN technical report [5] in section 6.4.2 ”Solution comparison data”.

2. The following text change should be made in section 7.5 of [5]:

UTRAN NEs having interfaces connected via slow bandwidth links like E1/T1/J1 shall also support Header Compression and the PPP extensions PPPmux and ML/MC-PPP.

[1] Motorola, PPPmux on the IP UTRAN Protocol Stack, TSGR3#21(01)1456

[2] Siemens, L1/L2 independence, Tdoc R3-011540

[3] R.Pazhyannur, I.Ali, C.Fox, PPP Multiplexing, draft-ietf-pppext-pppmux-03.txt

[4] 3GPP, Delay Budget within the Access Stratum, TR 25.853 v3.0.0

[5] 3GPP, IP Transport in UTRAN Work Task, TR 25.933, V1.1.0.
[6] Ericson, PPPmux, TSGR3#22(01)1964

_1055153591.ppt

Average overhead

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

30

50

70

90

110

130

150

170

#users

Average PPP&HDLC overhead

MRU = 100 bytes

MRU= 200 bytes

MRU= 300 bytes

MRU= 500 bytes

PPP without

multiplexing

