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Introduction
As part of Rel-17 Study Item on Enhancement for Data Collection for NR and EN-DC [1], 3GPP has agreed to the following RAN3 led objectives:
	Study high level principles for RAN intelligence enabled by AI, the functional framework (e.g. the AI functionality and the input/output of the component for AI enabled optimization) and identify the benefits of AI enabled NG-RAN through possible use cases e.g. energy saving, load balancing, mobility management, coverage optimization, etc.:
a) [bookmark: OLE_LINK1][bookmark: OLE_LINK2]Study standardization impacts for the identified use cases including: the data that may be needed by an AI function as input and data that may be produced by an AI function as output, which is interpretable for multi-vendor support.
b) [bookmark: OLE_LINK6][bookmark: OLE_LINK7]Study standardization impacts on the node or function in current NG-RAN architecture to receive/provide the input/output data.
c) Study standardization impacts on the network interface(s) to convey the input/output data among network nodes or AI functions.
[bookmark: OLE_LINK8]One general objective for the work is that the studies should be focused on the current NG-RAN architecture and interfaces to enable AI support for 5G deployments.



In addition, during RAN3#112 the following agreements were reached:
For e.g. AI functionality and input/output of the component for AI-enabled optimization
Capture the following high-level principles in the TR:
- The detailed AI/ML algorithms and models for use cases are out of RAN3 scope.
- The study focuses on AI/ML functionality and corresponding types of inputs/outputs. 
- The study is based on the current architecture and interfaces

Common understanding not to introduce new logical nodes or interfaces; should revise scope of TR

Capture the following high-level principles in the TR:
- The input/output and the location of AI inference should be studied case by case.
- Training aspects are FFS
- NG-RAN is prioritized; EN-DC is included in the scope. FFS on whether MR-DC should be down-prioritized.
- A general framework and workflow for AI/ML optimization should be defined and captured in the RAN TR. The generalized workflow should not prevent to “think beyond” the workflow if the use case requires so.

The definition of Lifecycle related terminologies should be included in the TR. The detailed definition of these terminologies such as Data collection, ML model, model training, model inference can be discussed in the second round.
For AI framework, all options on the table can be regarded as the starting point as basis for further refinement. How to define the AI framework will be discussed in the second round.
It is understood that we will work on the functional framework; it is understood that the figure in 7096 is FFS
Work on the description of each box in the AI functional framework
Open issues:
- Confirm that feedback from action to data sources is performance feedback, remove related FFS from Editor Note.
- Feedback from action can be used for to model training, whether model training achieves feedback from action directly is FFS.
- Postpone the discussion on other open issues proposed by R3-210617.
- The use cases agreed to start from at RAN3#110 E-meeting could be prioritized.
- Postpone the discussion on detailed description of use case to next meeting.
- whether Actor and Subject of action should be in one box or separate
- whether model training achieves feedback from action directly
- whether to change “Data sources” to “Data collection & preparation”, whether to change “Model training” to “Model training (offline/online)”.
- whether to remove Model performance feedback from Model inference to Model training
To be continued...

Focusing on current NG-RAN architecture and interfaces
- As a starting point, focus on at least the following use cases: Energy saving, load balancing, traffic steering/mobility optimization (other use cases, e.g. optimization of physical layer parameters, are not precluded)
- Augmented information should be studied case by case, e.g. history info, info needed for prediction, etc.

Common understanding that AI/ML does not overlap with SON

- Continue to study possible new input (augmented info)/output or requirements needed for identified use cases
- Continue to study potential new use cases
- Where ML model/training host/inference host can be placed (see CB#27)
- Spec impacts of deploying use cases (see CB#27)
- Capture def for augmented info if needed
To be continued...

For the identified use cases
How to enable the AI related functions in current RAN architecture: To be continued...

Study the enhancement of network interfaces to support AI enabled RAN intelligence based on the agreed use cases.
Coordinate with other working groups later for NRM enhancement when needed.
Detailed AI functionality and interface impacts could be studied case by case for the agreed use cases later.
Reuse the existing procedures for SON/MDT as the baseline for data collection or SON related use case where it fits. And additional enhancement/new signaling is studied when needed.

This contribution focuses on specific key use cases of Artificial Intelligence in RAN (RAN-AI) and emphasizes key requirements for further study taking into account the current NG-RAN architecture and required functionality. 
Overview of RAN-AI Use Cases
Optimization is a fundamental challenge in deploying large-scale cellular networks as configuration and adaptation of system parameters can have significant impact on key performance indicators (KPIs) such as system capacity, user QoE, latency, reliability, coverage, and numbers of active users, etc. 
This is especially critical for 5G networks as they are heterogenous in terms of frequency bands/ranges, macro and small cell deployments, diverse service offerings and traffic characteristics, and coexistence of different architectures including centralized virtual RAN functions and distributed nodes to support latency-sensitive edge computing and private networks.
As a result, there is a significant interest and need for networks to automate analytics/data collection and processing as well as convert the data into actions or policies for near-real time or real-time network management. The same industry trends which enable network virtualization and deployment of low-latency/high bandwidth services are also making application of power Artificial Intelligence (AI) tools such as machine learning (ML) algorithms to 5G networks feasible and scalable. 
These algorithms rely on historical data for deriving system models and training as well as real-time or near-real-time data collection to adapt to different network conditions. Furthermore, a variety of use cases can be supported by AI/ML techniques as noted in the SID including energy savings, traffic steering, mobility/coverage optimization, load balancing, and physical layer configuration optimization. Many of these use cases have common requirements in terms of data collection and KPIs for monitoring. At the same time, different use cases can have vastly different requirements in terms of the impact on network nodes or functionalities. Load balancing and mobility optimization for example may span across multiple parts of the 5G network architecture including the core network, OAM, and RAN itself. This implies that the appropriate implementation of different AI/ML techniques may involve multiple interfaces, signalling procedures, and processing requirements (including requirements on data aggregation or co-location with different nodes/functions). 
In addition, use cases may have different requirements on latency for both data collection and operation as illustrated in Figure 1. In case of Type 1 RAN-AI the ML/AI algorithms provide near-real time decisions (e.g. on a timescale of ~10ms-1s) based on centralized data sets and typically operate at the core-network or gNB-CU level where interfaces for higher layer signaling are anchored (e.g. X2/Xn, RRC, F1, etc.). Note, that here we are not precluding non-real time use cases as well, however it is expected that if near-real time applications can be supported, non-real time can as well, since in many cases, near-real time applications also utilize offline or long-term data collection/processing for algorithm training and parameter tuning.  In case of Type 2 RAN-AI the ML/AI algorithms are co-located or possibly embedded in the functionality of the distributed RAN nodes such as gNB-DUs or at the antenna/TRPs themselves to enable real-time decisions (e.g. on a timescale of < 10ms) with distributed data. 
[image: ]
Figure 1: Overview of different types of RAN-AI approaches
Of course, further sub-categories and comparisons between different approaches may be needed as part of the study, but it is proposed to at least include Type 1 and Type 2 approaches in the SI scope. In the following sections we explore in more detail certain RAN-AI use cases and requirements.

In the following sections we explore in more detail certain RAN-AI use cases and requirements.

Use Case 1: L1/L2 Beam Management Configuration and Optimization 
For 5G, engineering antenna parameters and beamforming across multiple sites is needed to meet system performance KPIs. Existing approaches require offline aggregation and processing of large data sets of measurements. This incurs significant overhead and constraints on latency for various network interfaces involved. Especially for mid-band and mmW frequencies, the sheer number of configurable parameters and possible combinations poses a massive challenge when attempting to balance coverage/interference tradeoffs, since decisions about what is optimal in one cell cannot be fully made in isolation. Furthermore, applicability of a certain set of parameters may be extremely site-specific due to local environmental, traffic, or hardware deployment considerations and therefore difficult to characterize via global training or optimization techniques. 
Instead, machine learning techniques to enable online and autonomous transmission parameter optimization locally (e.g. for parameters such as beamsteering or cell-specific and UE-specific RS configuration) should be considered because they have the potential to scale the approach to optimizing a larger set of RAN parameters without requiring centralization of data. 

Use Case 2: Multi-user MIMO Configuration and Optimization
Another area where online machine learning algorithms may be utilized within the RAN is to improve network performance by optimizing a given DU’s resource allocation algorithms to be more tailored to the specific deployment environment. Centralized approaches may be optimal in theory since they can factor in decisions of a large number of cells within a geographic area, however they can suffer from extreme latency requirements (e.g sub-ms actions) and computational complexity constraints for training and data collection (thousands of CSI reports for a single cell every second). This can be especially important in the context of Multi-user MIMO (MU-MIMO) user selection/pairing and parameter configuration which is again computationally complex due to the large number of potential user combinations at any given time slot, as well as the need for determining optimal resource allocation for paired users based on potentially out-of-date or limited  channel state feedback. A distributed approach may greatly reduce algorithm complexity by for example clustering users for scheduling based on learning the channel state and capacity regions of the local environment.

Use Case 3 : Scheduler Tuning and Parameter Optimization
Selection of the appropriate scheduler algorithm and tuning of associated parameters at the DU may depend on multiple traffic characteristics: QoS requirements, cell loading, mobility, channel conditions, etc. Especially considering the broad range of 5G use cases and their diverse requirements (e.g. eMBB, URLLC, V2X, IoT, etc.) a common set of parameters may not be optimal. Training models for different schedulers can be made offline, but coexistence and optimization of multiple schedulers is complex and often infeasible in practice. A real-time and distributed approach allows each DU scheduler to “learn” the appropriate parameters for different algorithms over time and/or influenced by network management functions or metrics obtained from the CU. 

Proposal 1: Consider the following use cases as part of the RAN-AI study:
· L1/L2 Beam Management Configuration and Operation Optimization
· Multi-user MIMO Configuration and Optimization
· Scheduler Tuning and Parameter Optimization
For the above use cases two different architecture options may be considered depending on where the data collection and control/policy information resides. An example block diagram is shown in Figure 2 below where the various AI functions, including policy engine, data collection, and the ML Agent itself have direct interfaces with the DU. 
The policy engine configures the data collection and ML Agent entities and the DU provides required analytics (e.g. L1/L2 metrics) directly to the data collection entity. The data collection entity provides required offline training or online feedback to ML Agent. Since the ML Agent passes control/scheduling info directly to DU – any configuration conflicts would need to be managed by the policy engine or directly between the DU and CU. 
This architecture would be well suited for real time use cases (e.g. beamforming or scheduler control) since the direct interfaces could support low latency for any control/feedback loops and could be scalable for distributed algorithms where several DUs could be coordinated or trained jointly while still giving autonomy to each individual DU for resource allocation and scheduling decisions. 

[image: ]
Figure 2. DU-connected architecture 

A second possible architecture block diagram is shown in Figure 3 below where the various machine learning functions, including policy engine, data collection, and the ML Agent have direct interfaces with both the DU and CU. The policy engine configures the data collection and ML Agent entities. The DU provides analytics (e.g. L1/L2 metrics) and the CU passes analytics (e.g. L3 measurements or data/user plane information) to the data collection entity. The data collection entity provides required offline training or online feedback to the ML Agent which passes control information to either the DU or CU explicitly or in the form of policy or configuration suggestions.
[image: ]
Figure 3. Hybrid DU/CU connected architecture

This architecture may be well suited for near-real time use cases (e.g. mobility, long-term coverage/beamforming, and Scheduler policy) since these scenarios often involve cross-layer optimization across the RAN protocol stack and have both long-term and short-term control/feedback loops. They also allow more centralization of training data and pooling of computation resources, while still residing in close proximity with the relevant RAN entities. Whether for certain use cases hybrid model where data collection and ML agents are actually distributed and may reside at multiple locations (e.g. adjacent to both the CU and DU) could be further studied as well.
Proposal 2: The RAN-AI study should consider both DU-connected and hybrid DU/CU connected architectures for real-time and near real-time use cases.

Conclusion
This contribution discussed specific key use cases of Artificial Intelligence in RAN (RAN-AI) and emphasized key requirements for further study taking into account the current NG-RAN architecture and required functionality. The following proposals were made:
Proposal 1: Consider the following use cases as part of the RAN-AI study:
· L1/L2 Beam Management Configuration and Operation Optimization
· Multi-user MIMO Configuration and Optimization
· Scheduler Tuning and Parameter Optimization

Proposal 2: The RAN-AI study should consider both DU-connected and hybrid DU/CU connected architectures for real-time and near real-time use cases.
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