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1. Introduction

In RAN3 meeting #110 (E-meeting), the skeleton of TR37.817 [1] was endorsed and the use cases for Artificial Intelligence in RAN and Potential Benefits were initially discussed. Following agreements have been achieved [2]: 

- As a starting point, focus on at least the following use cases: Energy saving, load balancing, traffic steering/mobility optimization (other use cases, e.g., optimization of physical layer parameters, are not precluded)

- Augmented information should be studied case by case, e.g., history info, info needed for prediction, etc.
In this contribution, we compare two machine learning (ML) based algorithms to the conventional approaches using open dataset provided by Telecom Italia (CDR records). We show that both algorithms outperform the conventional approach in BS power-off duration. We believe with better/more data, the performance of ML-based approaches will be even better.
2. Discussion

1.1. Motivation for BS Power Saving
The large bill of energy consumption is a pain point of MNOs
Energy consumption has been one of the biggest MNO problems; MNOs’ energy bills are now comparable to their personnel costs for network operations. To give some examples, 

· In the EU, bill of energy consumption is about 18 percent of total operating expense (OPEX) [3] 

· In India, bill of energy consumption is about 32 percent of total operating expense (OPEX) [4]
In Germany, the electricity bill for mobile network operators is more than 200 million Euros per year [5]
If we dig further, we will find that in the cellular networks, base stations have been the biggest power consumption source; studies [6, 7, 8] show that roughly 60 ~ 80% of all the power consumption in cellular networks happens in base stations. Figure 1 shows an example of power consumption distribution in a cellular network, as given by [6].
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Figure 1. Power consumption distribution in cellular networks
Therefore, reducing power consumption of base stations is a critical way of power saving for cellular networks.
Power consumption breakdown in cellular BSs
In a normal implementation, the total power consumption of a BS is composed of fixed (traffic independent) and variable (traffic dependent) parts. The fixed part, including air conditioning and power supply, accounts for around 25~40% of total energy consumption. This amount of energy is wasted even when no traffic is served by the BS. Figure 2 shows an analysis from [9].
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Figure 2. Power consumption breakdown in cellular base stations
When a base station is powered on, its power consumption scales with traffic load. Figure 3 shows that in an LTE network, around 60 percent of radio power consumption in a BS scales with traffic load [10].
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Figure 3. Power consumption scales with traffic load
Observation #1: The biggest portion of power consumption of a cellular network resides in its base stations. A base station consumes a fixed amount of power even when it is not serving any users. Therefore, turning a BS into sleep or switching it off completely when there is little user traffic is a viable way of reducing power consumption of cellular networks. 
1.2. Issues with conventional BS power saving

Putting a BS into sleep mode or shutting it off is often a preferred method for energy saving because they work on the operating protocols of the system and do not require changes to the network architecture, making them far less costly and easier for testing and implementation [11].
However, the conventional BS power saving approaches do have some issues.
First, the traffic or energy models used in a conventional approach are usually over simplified and some assumptions are too rigid. For example, they may assume uniform traffic distribution and arrival pattern in all cells, at all times, 

Second, conventional BS power saving approach requires energy-saving related parameter to be adjusted differently and manually for different BSs, for example, different thresholds for different cell types. This causes burdens to the operators.

Third, there is usually no prediction of future traffic involved when making sleep decisions; only the current traffic carried on the BS is known, thus the sleep mode decision may not be accurate.
ML-based approaches are able to resolve these issues nicely.
· First, with ML-based approach, engineers/operators do not need to pre-determine the traffic pattern by manual analysis. Instead, traffic pattern is learned from historical data and decisions are made based on both historical and current data.

· Second, with ML-based approach, proper sleep mode setting can be automatically learned either for each BS separately or for a group of BSs with similar behavior. These parameters will also be refined over time.
· Third, with ML-based approach, the sleeping decision is made based on predicted traffic for the future time interval instead of the traffic of current time interval. Therefore, it is more accurate.

Observation #2: ML-based approaches are able to resolve some issues of conventional BS power saving approaches, for example, overly simplified traffic model and setting thresholds manually.
1.3. The potential of ML based approach

In this contribution, we use open dataset provided by Telecom Italia to show that both ML-based approaches we tested can provide better performance for traffic prediction, on which BS power saving decisions rely.
The Telecom Italia Dataset

The Telecom Italia dataset provides information about the telecommunication activity over the city of Milano, between Nov 1st, 2013 and Jan 1st, 2014 (62 days of data). The dataset is the result of a computation over the Call Detail Records (CDRs) generated by the Telecom Italia cellular network over the city of Milano and Province of Trentino. These CDRs log the user activity, including phone calls, SMSs and Internet, for billing and network management purposes. The dataset was initially used for Telecom Italia’s Big Data Challenge in 2014. It is now available in the Harvard Dataverse [12].
To protect user privacy, the data has been pre-processed. For example, the entire Milan/Trentino area is divided into 1000 squares and each square is assigned a Square ID. Therefore, although there is a “Cell ID” field in each data record, it actually means “Square ID”. For easy understanding, we will use Cell to represent Square in this document.
In our experiment, we use only the Internet data for performance validation.
The Classical Time Series Prediction Algorithm
We first tested a classical method, ARIMA, against conventional approach.
We used 5 days of data (weekdays, from Monday to Friday) for all approaches. We first plotted cell traffic behavior for a group of cells and selected 200 cells which all have very low traffic between 19:00 – 23:00. Our experiments use the data from these identified cells.
For the conventional approach, we put all 200 selected cells to sleep during the interval between 19:00 – 23:00 and use this as our benchmark for comparison. In this case, each cell sleeps 5 hours (300 minutes) every day during the 19:00 – 23:00 period, no matter what the real traffic condition is.
When working with ARIMA, we used the first 3 of the 5-day data for training and the last 2 of the 5-day data for validation. We also identified and compared 2 candidate threshold settings from the non-busy hour data in the training dataset; whenever the traffic level of a cell drops below thresholds, the cell will be put into sleep for the next time interval (10 minutes). We assumed that even during the sleeping period, the traffic information of the sleeping cell is available for predicting the activity of the cell for the future time interval. 

Figure 4 shows an example (Cell #1) of this setup and prediction results with one of the threshold settings.
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Figure 4. ARIMA: the training and prediction of traffic vs real traffic
We ran the algorithm for the 200 selected cells and compared it with the conventional approach. We found that in most cases, ARIMA has positive gains over the conventional approach. And when it has positive gains, it achieves roughly 70~80% gains in sleeping durations than that of the conventional approach. 

The results are shown in Table 1. Note for the conventional approach the sleeping duration is always 300 minutes. Whenever an averaged data is presented, it is an average over 200 cells.
Table 1. Comparison of sleeping durations: ARIMA vs. conventional approach. 
	Threshold
	Total number of cells with positive gains
	Average sleeping duration in 1 day (mins)
	Average gain on sleeping duration

	thd #1
	118 (out of 200), 59%
	504
	68.10%

	thd #2
	167 (out of 200), 83.5%
	542
	80.50%


We use the normalized root-mean-square error (NRMSE) to gauge the accuracy of ARIMA prediction because the traffic load for each cell varies greatly. The averaged NRMSE for the two threshold settings is 0.1065, over the 200 cells we tested. 
Note that we can also use ML algorithms (e.g., reinforcement learning) to determine the sleeping thresholds for different cells so that each cell has its own dedicated threshold. We believe with dedicated thresholds BSs will achieve better balance between power consumption and service quality. We leave this for our future study.

The Long-Short-Term Memory Approach
Long Short-Term Memory (LSTM) networks are a type of recurrent neural network capable of learning order dependence in sequence prediction problems. To test whether LSTM is an appropriate approach for traffic load prediction, we also ran the LSTM algorithm for the 200 selected cells and compared it with ARIMA and the conventional approach.
Figure 5 shows the prediction result of the same Cell #1 example using LSTM.
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Figure 5. LSTM: the training and prediction of traffic vs real traffic
In Table 2, we compare the performance of ARIMA and LSTM. Note the numbers for ARIMA in the table are averages of two different threshold settings.
Table 2. Performance Comparison: ARIMA vs LSTM
	Algorithm
	Total number of cells with positive gains
	Average Sleeping duration in 1 day (mins)
	Gain on sleeping duration
	Average NRMSE

	ARIMA
	71.25%
	523
	74.33%
	0.1065

	LSTM
	87.50%
	534.45
	78.15%
	0.1046


From Table 2 we observed that LSTM performs slightly better than ARIMA on all aspects.
Observation 3: By using the data from prior time intervals to predict the traffic of the future time interval, both ARIMA and LSTM algorithms outperform the conventional approach in BS sleeping hours.
1.4. The need for the right data

Limited by the available open dataset, we could only use traffic data extracted from CDRs in our experiments. This type of data has some limitations; one of them being the lack of other attributes of information, which may also be needed to make proper switching on/off decision. We discuss some of them below.
The BS power on/off strategies

There are different ways of handling the traffic of a BS when considering putting it to sleep. 
· In one way we can have the macro base station (MBS) handle the traffic that are supposed to be served by the sleeping BS. 
· In another way, we can have the neighboring small-cell base stations (SBSs) handle the traffic that are supposed to be served by the sleeping BS. 
Either way, we need to ensure the target (MBS or neighboring SBSs) has enough resource to maintain the QoS/QoE of the UEs handed over to them from the sleeping BS. We see this type of information, i.e., the traffic load and resource availability information of the MBS/neighboring BSs, is missing from the CDRs.
The BS wake-up mechanism

Another important aspect, which we have not discussed so far, is the wake-up decision making of a sleeping BS [13]. In general, a BS has to maintain a timer which can wake itself up at the end of each sleeping interval. During the sleeping interval, the MBS or its neighboring SBSs will gather the traffic information for the sleeping BS and store the information in a location that is accessible for the BS at sleep. When the BS wakes up, it will not start service immediately. Instead, it first retrieves the information it needs (e.g., traffic load at MBS or neighbouring SBSs) to decide whether it should go to sleep again in the next interval, or to start serving the UEs in its coverage area. 
To make a good decision, the BS looks at both the predicted result by the ML model and the stored traffic load information collected by the MBS or neighbouring SBSs. In normal cases, assuming the model is well trained, the traffic prediction result (for future time intervals) should be accurate. Using the measurements collected by other BS’s can serve as a safety check, just in case some unexpected events occur, which should be rare.
In our experiments, this information needed to support the sleeping/wake-up decision, such as traffic load at MBS or neighboring SBSs, is not available in the CDRs.
Entire BS on/off vs. Module on/off

Instead of switching off the entire BS, we can also switch off some of the modules of a BS, such as certain carriers or channels, and related circuits. This approach brings desirable flexibility to the BS power saving strategy. However, to do module-based sleeping, additional and more detailed information is needed.
Based on the discussion above, we see a clear need for better data (e.g., data with finer granularity, such as 5 min) and more measurements (e.g., data needed to determine whether a BS should stay on or go back to sleep when waken up), to support AI/ML based approaches.
Observation #4: Traffic load data of the sleeping BS alone is not enough for making good BS on/off decisions; additional data (e.g., traffic load of the MBS and/or neighboring SBSs, association requests during the sleeping period etc.) and better measurements (e.g., measurements at finer granularity) are needed to enable AI/ML based BS power saving.
Proposal: AI/ML-based BS power saving should be considered a use case of this study item. Necessary data should be collected to support AI/ML-based BS power saving.
3. Conclusion

We observed the following from above discussions:

Observation #1: The biggest portion of power consumption of a cellular network resides in its base stations. A base station consumes a fixed amount of power even when it is not serving any users. Therefore, turning a BS into sleep or switching it off completely are viable ways of reducing power consumption of cellular networks. 

Observation #2: ML-based approaches are able to resolve some issues of conventional BS power saving approaches, for example, overly simplified traffic model and setting thresholds manually.
Observation #3: By using the data from prior time interval to predict the traffic of the future time interval, both ARIMA and LSTM algorithms outperform the conventional approach in BS sleeping hours.
Observation #4: Traffic load data of the sleeping BS alone is not enough for making good BS on/off decisions; more data (e.g., traffic load of the MBS and/or neighboring SBSs, association requests during the sleeping period etc.) and better measurements (e.g., measurements at finer granularity) are needed to enable AI/ML based BS power saving.
Proposal: AI/ML-based BS power saving should be considered a use case of this study item. Necessary data should be collected to support AI/ML-based BS power saving.
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