3GPP TSG-RAN WG2 Meeting #102
R2-1810911
Busan, South Korea, 21-25 May 2018

(update of R2-1810748)
Agenda Item:
10.4.1.8.2
Source:
Huawei, HiSilicon
Title:
Optimization of Access Control configuration in NR
Document for:
Discussion and decision
1 Introduction
In the RAN2 #102 meeting [1], following agreements were achieved:
Agreements for NR

1
All access control info will be contained in SIB1. (We need to find a way to ensure the size is constrained)

Working assumption for NR and LTE/5GC

2
Support an encoding option 2b from the mail discussion (AC are explicitly indicated). ASN.1 for this approach will be included in the CR for SA. Further optimisations can still be considered next meeting,
In this paper, we discuss had to further optimize the signalling of access barring configuration so as to reduce the size of the information that needs to be signalled via SIB1 for access control.
2 Discussion
Per the agreement above the following encoding was adopted as the baseline for access control info in SIB1:

[image: image1]
According to this approach a list is provided (UAC-BarringPerCatList), and each entry of the list contains an AC (AccessCategory) and a pointer to the corresponding access barring parameter set (uac-barringInfoSetIndex).

The advantage of this approach is that access barring parameters do not need to be associated with each possible value of access category. Hence, UAC-BarringPerCatList only needs to contain as many entries of access categories as the operator wants to configure for the given PLMN. Thus, if the operator defines a few operator defined access categories for example, then only these access categories would have entries in the table.

On the other hand, each entry of the table includes the value of AccessCategory, which is a 6 bit field per the current encoding. This is in addition to the 3 bits needed to encode the uac-barringInfoSetIndex field, bringing the total size of each UAC-BarringPerCat to 9 bits. Clearly the size of UAC-BarringPerCatList can grow very quickly, as the number of configured access categories is increased. As analysed in [2], for the worst case of 64 access categories, the size of UAC-BarringPerCatList would be 6+63*9=573 bits per configured PLMN. Compared to this, if UAC-BarringPerCatList were encoded as per option 2a of the previous e-mail discussion [3], the size of UAC-BarringPerCatList would only be 63*3=189 bits per PLMN [2].

It is easy to calculate that option 2a encoding is more efficient that option 2b encoding, if access barring for more than 20 access categories is configured. It is conceivable that with operator defined access categories, and the probable addition of more standardized access categories in future releases, this threshold could be met quite often.
Observation1: Encoding of UAC-BarringPerCat per option 2b (agreed in RAN2 #102) is extremely inefficient if barring parameters for more than a few access categories are configured.

Proposal 1: The method of encoding the list should be configurable, and encoding 2a should be supported as one option.
2.1 Optimizing Access Category Encoding

As we have just illustrated, explicitly encoding each access category in the list (encoding 2b) is efficient only when few access categories are configured. However, the alternative of listing all access categories (encoding 2b) is also inefficient for small to moderate number of access categories, which is expected to be the typical case. The question is then; is there another approach that can retain the best advantages of both 2a and 2b?

In [4] we proposed a third approach which in fact achieves this objective. The main concept of this approach is not to explicitly signal the access category of each entry of UAC-BarringPerCat via a 6 bit field AccessCategory. Rather a bitmap is used to indicate which of the 63 possible access categories have corresponding entries in UAC-BarringPerCatList.

For example, a bitmap of size 63 bits, could be used for this purpose. If the operator wants to configure access barring information for a particular access category (e.g. AC23), then the 23rd -1 (22nd) bit of the bit map would be set to 1. Each bit set in the bitmap (each configured access category) would have a corresponding entry in UAC-BarringPerCatList. The order of a configured access category in the bitmap indicates the corresponding entry of UAC-BarringPerCatList.
To illustrate the concept, let’s consider a toy example. Assume 3 bits are set in the bitmap (bits 5, 22, and 35). This means that UAC-BarringPerCatList should also include 3 entries of UAC-BarringPerCat. Setting bit 5 in the bitmap, indicates that barring parameters for AC6 are configure by an entry in UAC-BarringPerCatList, and since bit 5 is the first bit set in the bit map, the corresponding entry of UAC-BarringPerCatList is the first entry in the list. Similarly, the second entry of UAC-BarringPerCatList would indicate the access barring parameter set for AC23 (bit 22 or the bitmap), and the third entry of UAC-BarringPerCatList would indicate the access barring parameter set for AC36 (bit 35 of the bitmap).
Clearly this encoding can be quite efficient, as we need only one bitmap per configured PLMN. Since a bitmap of 63 bits would occupy the same space as roughly 11 instances of AccessCategory, it is clear that this approach can be more efficient than 2b encoding for a moderate number of access categories.
Observation2: Except for very small number of access categories, using a bitmap to indicate which access categories have barring parameter sets defined by UAC-BarringPerCatList is more efficient that explicitly encoding the access category within each entry of UAC-BarringPerCat.
The following ASN.1 snippet illustrates the encoding for this approach:

[image: image2]
Furthermore, it is relatively simple to improve the efficiency of the bitmap encoding approach for small number of access categories by allowing the size of the bitmap to be variable. Say for example an operator only wants to configure access barring parameters for the 7 access categories standardized in Rel. 15. Then rather than using a bitmap of size 63 bits, we could configure a smaller bitmap (say 8 bits). It is clear that this 8 bit bitmap would be much more efficient than the 6+7*6 = 48 bits needed to encode each of these access categories using the 2b encoding approach.
Of course there is some additional overhead needed to configure the size of the access category bitmap. However, this overhead does not add more than 1 additional bit to the largest bitmap option (1 choice bit + 63 bit map in this example).

The following ASN.1 snippet illustrates the encoding with this optimization:

[image: image3]
Proposal 2: Use a bitmap to indicate which access categories have corresponding barring parameter sets configure by UAC-BarringPerCatList, rather than explicitly signalling the access category in UAC-BarringPerCat.

· Each bit in the bitmap corresponds to an Access Category number.
· The length of the barring parameter index list is equal to the number of bits set to 1 in the bitmap.
· If a bit in the bitmap is set to 1, an index to an access barring parameter set is explicitly identified for the corresponding Access Category,
· Access barring parameter set indices are listed in the order of the bits set to 1 in the bitmap
Proposal 3: The size of the access category bitmap should be configurable within a small set of allowed values (e.g. 8 bits, 16 bits, 32 bits) etc.
2.2 Reduction of broadcast Access Categories

The primary contributor to the size of access barring information is the need to provide access parameters for each of the 63 possible Access Categories (excluding AC0). It is likely that only a small subset of these categories are of interest to the network operator. For example, categories 8 – 31 are reserved and likely will not be defined or used for Rel. 15. Also, categories 32 – 63 are not standardized, and it is likely that an operator may only define a subset of these. Therefore, instead of presenting every Access Category, only the access categories of interest to the network can be broadcasted.
Any Access Category for which a barring parameter set is not explicitly defined could follow a default configuration, (e.g. either be considered as not barred), or be considered as the same configuration with a default barring parameter set (e.g. the common barring parameter set).
In addition, it is not necessary to use a single approach to list these different types of access categories. For example, it seems likely that barring parameters for AC1 – AC7 will typically be defined for any network (even if some of these categories point to the same set of barring parameters). On the other hand, which and how many operator defined access categories will clearly be different in different operator networks. How best to optimize the encoding of access barring parameters for standardized vs. operator defined access categories may be different, and hence it seems reasonable to list each of these types of access categories separately.

In addition, it is not clear if there is need for Rel. 15 to support the encoding of access barring parameters for AC8 – AC31, if no access category in this set will be supported for Rel. 15.

Proposal 4: Use separate IEs to list standardized and operator defined access categories, to enable the optimization of the encoding for each of these lists to be done individually.

The following illustrates how this can be encoded in ASN.1:

[image: image4]
Proposal 5: RAN 2 should discuss whether there is a need to support the encoding of access barring parameters for AC8 – AC31 in Rel. 15.

Figure 1 below illustrates how the size of UAC-BarringAccessCategories varies depending on the number of access catagories for which access barring parameters are configured, for different encoding schemes:

[image: image5.emf]
Figure 1, size of UAC-BarringAccessCategories as a function of number of Access Categories for which barring parameters are configure, and for different ASN.1 encoding schemes
2.3 Common barring parameter set

As discussed above, the size of barring configuration can be significantly reduced by defining a Common Barring Parameter set that applied to many Access Categories. The common set can be seen as a default set applied to an Access Category if the Access Category is not linked to any specific parameter set index (e.g. the specific Access Category is not listed). In this understanding, there’s no need to explicitly indicate Access Category to the common set, since all Access Categories that are not linked to a different parameter set would be considered as linked to the common set. In this way, signalling overhead is further reduced.
Observation3: There is no need to link every Access Category to a set of barring parameter set. Access Categories that are not explicitly linked to parameter set can be considered as linked to a default access barring parameter set (Common Barring Parameter set).
Proposal 6: One of the configured access barring parameter sets can be designated as the Common Barring Parameter set. This parameter set is used for any Access Category that is not explicitly listed in the configuration.
One consideration is whether to define a single default set of barring parameters that apply to all PLMNs, or if it is useful for different PLMNs to have different Common Barring Parameter set configurations. It is very possible that an operator may desire to apply different default barring behaviour for different PLMNs. In addition, the identification of one of the barring parameter sets as the Common Barring Parameter set simply requires a pointer to the selected parameter set, which is of size log2(N) (e.g. 3 bits for N = 8). Hence, the overhead of designating a Common Barring Parameter set per PLMN would not be at most (12+1)* log2(N) bits (e.g. 13*3 = 39 bits for N = 8). Therefore, it seems reasonable to define a Common Barring Parameter set for each configured PLMN, and a Common Barring Parameter set for the PLMN-common configuration.

Proposal 7: For each PLMN configuration defined, and for the PLMN-common configuration, one of the configured access barring parameter sets shall be designated as the Common Barring Parameter set for that PLMN.
3 Conclusion

The paper proposes solutions to optimize the size of information needed to communicate access barring parameters in SIB1. We have the following proposals:

Proposal 1: The method of encoding the list should be configurable, and encoding 2a should be supported as one option.

Proposal 2: Use a bitmap to indicate which access categories have corresponding barring parameter sets configure by UAC-BarringPerCatList, rather than explicitly signalling the access category in UAC-BarringPerCat.

· Each bit in the bitmap corresponds to an Access Category number.
· The length of the barring parameter index list is equal to the number of bits set to 1 in the bitmap.
· If a bit in the bitmap is set to 1, an index to an access barring parameter set is explicitly identified for the corresponding Access Category,
· Access barring parameter set indices are listed in the order of the bits set to 1 in the bitmap
Proposal 3: The size of the access category bitmap should be configurable within a small set of allowed values (e.g. 8 bits, 16 bits, 32 bits) etc.

Proposal 4: Use separate IEs to list standardized and operator defined access categories, to enable the optimization of the encoding for each of these lists to be done individually.

Proposal 5: RAN 2 should discuss whether there is a need to support the encoding of access barring parameters for AC8 – AC31 in Rel. 15.

Proposal 6: One of the configured access barring parameter sets can be designated as the Common Barring Parameter set. This parameter set is used for any Access Category that is not explicitly listed in the configuration.
Proposal 7: For each PLMN configuration defined, and for the PLMN-common configuration, one of the configured access barring parameter sets shall be designated as the Common Barring Parameter set for that PLMN.

4 References
[1] RAN2#102 chairman notes
[2] R2-1806762, “Further reducing the size of access barring information”, Ericsson, RAN2 #102
[3] R2-1808597, “[101bis#45][NR] TP on AC (LG)”, LG Electronics Inc. (Email discussion Rapporteur), RAN2 #102
[4] R2-1809082, ”Optimization of Access Control configuration in NR”, Huawei, HiSilicon, RAN2 #102
UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat 	

UAC-BarringPerCat ::= SEQUENCE {

	AccessCategory				INTEGER (1..maxAccessCat-1),

	uac-barringInfoSetIndex			INTEGER (1.. maxBarringInfoSet)

}

	uac-BarringInfo 						SEQUENCE {

		uac-BarringForCommon				UAC-BarringAccessCategories		OPTIONAL,

			uac-BarringPerPLMN-List				UAC-BarringPerPLMN-List			OPTIONAL,

			uac-BarringInfoSetList				UAC-BarringInfoSetList

	}									OPTIONAL,

	lateNonCriticalExtension			OCTET STRING		OPTIONAL,

	nonCriticalExtension				SEQUENCE{}			OPTIONAL

}

UAC-BarringPerPLMN-List ::= 		SEQUENCE (SIZE (1.. maxPLMN)) OF UAC-BarringPerPLMN

UAC-BarringPerPLMN ::=			SEQUENCE {

		plmn-IdentityIndex					INTEGER (1..maxPLMN),

		uac-BarringAccessCatagories				UAC-BarringAccessCategories

}

UAC-BarringAccessCategories ::= SEQUENCE {

	 accessCategories 		BIT STRING (SIZE(63)),

	 uac-BarringPerCatList				UAC-BarringPerCatList

}

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= INTEGER (1.. maxBarringInfoSet)

UAC-BarringInfoSetList ::= SEQUENCE (SIZE(maxBarringInfoSet)) OF UAC-BarringInfoSet

UAC-BarringInfoSet ::= SEQUENCE {

	uac-BarringFactor			ENUMERATED {

									p00, p05, p10, p15, p20, p25, p30, p40,

									p50, p60, p70, p75, p80, p85, p90, p95},

	uac-BarringTime				ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512},

	uac-BarringForAccessIdentity			BIT STRING (SIZE(7))

}

UAC-BarringPerPLMN ::=			SEQUENCE {

		plmn-IdentityIndex					INTEGER (1..maxPLMN),

		uac-BarringAccessCategories				UAC-BarringAccessCategories

}

UAC-BarringAccessCategories ::= SEQUENCE {

	 accessCategories 		CHOICE{

			 uac-BarringPerCatList		SEQUENCE (SIZE(maxAccessCat-1)) OF UAC-BarringPerCat,

 {

			variableAccessCategoriesList	SEQUENCE {

				accessCategories32orLess	CHOICE{

					accessCategories1to32 	BIT STRING (SIZE(32)),

					accessCategories1to16 BIT STRING (SIZE(16)),

					accessCategories1to8 BIT STRING (SIZE(8))

				},

		 uac-BarringPerCatList				UAC-BarringPerCatList

			}

		}

}

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCatover2)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= INTEGER (1.. maxBarringInfoSet)

…

maxAccessCatover2	INTEGER ::= 32				-- Maximum number of Access Categories divided by 2

UAC-BarringPerPLMN ::=			SEQUENCE {

		plmn-IdentityIndex					INTEGER (1..maxPLMN),

		uac-BarringAccessCategories				UAC-BarringAccessCategories

}

UAC-BarringAccessCategories::= SEQUENCE {

	 uac-BarringAccessCategoriesStandardized		UAC-BarringAccessCategorySelection	OPTIONAL,

	 uac-BarringAccessCategoriesOperatorDef		UAC-BarringAccessCategorySelection	OPTIONAL

}

UAC-BarringAccessCategorySelection ::= SEQUENCE {

	 accessCategories 		CHOICE{

			uac-BarringPerCatList			SEQUENCE (SIZE(maxAccessCatover2)) OF UAC-BarringPerCat, 					

			variableAccessCategoriesList	SEQUENCE {

				accessCategories16or8	CHOICE{ 					accessCategories16 BIT STRING (SIZE(16)),

					accessCategories8 BIT STRING (SIZE(8))

				},

		 uac-BarringPerCatList				UAC-BarringPerCatList

			}

		}

}

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCatover4)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= INTEGER (1.. maxBarringInfoSet)

…

maxAccessCatover2	INTEGER ::= 32				-- Maximum number of Access Categories divided by 2

maxAccessCatover4	INTEGER ::= 16				-- Maximum number of Access Categories divided by 4

3GPP

