
3GPP TSG-RAN WG2 NR Ad hoc 1801
R2-1800893
Vancouver, Canada, 22nd – 26th January 2018

Source: 
vivo
Title: 
Discussion on RLC window upon SN wrap around
Agenda Item:
10.3.2.1
Document for:
Discussion and decision
Introduction

In this paper we will discuss the issues of error control of RLC window upon SN wrap around in the current TS 38.322.
Discussion

UM RLC

Based on the current Running TS 38.322, the actions of receiving UM RLC entity is：
	5.2.2.2
Receive operations
5.2.2.2.1
General

The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_Next_Highest as follows:

-
a SN falls within the reassembly window if (RX_Next_Highest – UM_Window_Size) <= SN <RX_Next_Highest;
-
a SN falls outside of the reassembly window otherwise.

5.1.2.2.3 Actions when an UMD PDU is placed in the reception buffer

When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:

-
if all byte segments with SN = x are received:
-
reassemble the RLC SDU from all byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.

-
if x = RX_Next_Reassembly:

-
update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;

-
else if x falls outside of the reassembly window:

-
update RX_Next_Highest to x + 1;

-
discard any UMD PDUs with SN that falls outside of the reassembly window;

-
if RX_Next_Reassembly falls outside of the reassembly window:

-
set RX_Next_Reassembly to the SN of the first SN >= (RX_Next_Highest – UM_Window_Size) that has not been reassembled and delivered to upper layer;

<omitting the rest>


As a result, based on the current procedure, it is possible to control the UM RLC reordering window incorrectly. An example which SN size is 6 bits is illustrated in the following:


[image: image1.emf]37 31 35 62 63 36

…

34

RX_NEXT_Reassembly

RX_Timer_Trigger

…

Reassembly window

RX_NEXT_Highest

38 39 0

(a)

37 31 35 62 63 36

…

34

RX_NEXT_Reassembly

RX_Timer_Trigger

…

Reassembly window

RX_NEXT_Highest

38 39 0 35 36

(b)

4

…


Fig. 1 Example for movement of UM RLC reordering window when SN wrap around occurs
As described in 38.322, all state variables related to UM data transfer can take values from 0 to 63 for 6 bit SN or from 0 to 4095 for 12 bit SN. Then if the packet with SN=63 (the maximum SN) is received, the RX_Next_Highest will be set to zero as shown in Fig.1 (a). According to the actual design of reassembly window, the UM RLC entity should maintain a fixed window size, that is, the packet with SN (32<=SN<=63) can fall within reassembly window. However, based on protocol description “All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 64 for 6 bit SN and 4096 for 12 bit SN)” and the definition of reassembly window, e.g. (RX_Next_Highest – UM_Window_Size) <= SN< RX_Next_Highest, we find that the actual size of reordering window is less than UM_Window_Size. This will result that the receiving UM RLC updates falsely the RX_Next_Highest when it receives a packet which is supposed to fall within the reassembly window. For example, when packet with SN=35 is received, the receiving UM RLC will update RX_Next_Highest=36 as shown in Fig.1 (b). As a result, it will accelerate the forwarding movement of the receiving window and loss more packets.
Observation 1: The current running TS 38.322 will result in error control of UM RLC reordering window when SN wrap around occurs. It may accelerate the forwarding movement of the receiving window and loss more packets.
AM RLC

Based on the current Running TS 38.322, the actions of transmitting side of AM RLC entity is：
	5.2.3.1 Transmit operations

5.2.3.1.1 General

The transmitting side of an AM RLC entity shall prioritize transmission of RLC control PDUs over AMD PDUs. The transmitting side of an AM RLC entity shall prioritize transmission of AMD PDUs containing previously transmitted RLC SDUs or RLC SDU segments over transmission of AMD PDUs containing not previously transmitted RLC SDUs or RLC SDU segments.

The transmitting side of an AM RLC entity shall maintain a transmitting window according to the state variable TX_Next_Ack as follows:

-
a SN falls within the transmitting window if TX_Next_Ack <= SN < TX_Next_Ack + AM_Window_Size;

-
a SN falls outside of the transmitting window otherwise.

The transmitting side of an AM RLC entity shall not submit to lower layer any AMD PDU whose SN falls outside of the transmitting window.
<omitting the rest>


According to the current procedure, there are also some errors in transmitting window of transmission side of AM RLC entity. An example with SN= 12 bits is illustrated in the following:


[image: image2.emf]Transmitting window

2137 2049 2135 4094 4095 2136

…

2134

TX_Next_Ack

…

2138 2139

Transmitting window

2137 2049 2135 4094 4095 2136

…

2134

TX_Next_Ack

…

2138 2139

0

2048

2048

(a)

(b)

TX_Next

TX_Next


Fig. 2 Example for movement of AM RLC transmitting window upon SN wrap around
When the packet with SN=2048 is positively acknowledged, the transmission side of AM RLC entity will update TX_Next_Ack=2049 as shown in Fig.2(b). Then the transmitting side of an AM RLC entity shall update the transmitting window according to the state variable TX_Next_Ack. Due to all arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 4096 for 12 bit SN and 262144 for 18 bit SN), we can find that the packet which can fall within transmitting window should satisfy the inequation TX_Next_Ack(2048) <= SN < TX_Next_Ack + AM_Window_Size(0). It is obvious that the actual size of transmitting window is equal to zero. Based on the protocol specification “the transmitting side of an AM RLC entity shall not submit to lower layer any AMD PDU whose SN falls outside of the transmitting window”, the transmitting side of AM RLC can not transmit any new packet.

Observation 2: The transmitting side of AM RLC entity cannot transmit any new packet when SN wrap around occurs.

Next, we will analyze the behavior of receiving side of the peer AM RLC entity.


[image: image3.emf](a)

Receiving window

2137 2048 2135 4094 4095 2136

…

2134

RX_Next

RX_Next_Status_Trigger

…

RX_Next_Highest

2138 2139

0

RX_Highest_Status

86

(b)

Receiving window

2137 2048 2135 4094 4095 2136

…

2134

RX_Next

RX_Next_Status_Trigger

…

RX_Next_Highest

2138 2139

0

RX_Highest_Status


Fig. 3 Example for movement of AM RLC receiving window up SN wrap around 

As shown in the fig.3, when a packet with SN=2^(SN-1)=2048 is received, the receiving side of AM RLC entity will updates RX_Next to the SN of the first RLC SDU with SN > current RX_Next for which not all bytes have been received, that is, the receiving side of AM RLC entity will update RX_Next=2135 as shown in Fig. 3(b).

Based on observation 2, the transmitting side of AM RLC entity cannot transmit any new packet when it receives the successful transmission indicator of packet with SN=2048 from its peer AM RLC entity, but it can retransmit packet with SN within the range TX_Next_Ack <= SN < TX_Next according to the STATUS PDU which triggered by receiving side of its peer AM RLC entity when t-reassembly expires. For example, it can retransmit packet with SN=2135. However, the actual size of receiving window (RX_Next <= SN < RX_Next + AM_Window_Size) is equal to zero. According to the protocol specification, the receiving side of AM RLC entity will discard the packet which is supposed to place in the receiving buffer and bring out unnecessary retransmission and delay. When the maximum retransmission times is reached, RRC re-establishment is triggered.
Observation 3: The receiving side of AM RLC entity may discard the packet which is supposed to place in the buffer when wrap around occurs. This will result in unnecessary retransmission and delay, which will trigger RRC re-establishment.
Solution

To solve the above issue, we suggest a modulus base shall be used when performing arithmetic comparisons of state variables or SN values to maintain a fix size of reassembly/transmitting/receiving window. This can be achieved by a minor update of the current description of status variables, as listed in the TP in the Annex.

Proposal 1: Follow LTE, a modulus base shall be used when performing arithmetic comparisons of state variables or SN values.

Proposal 2: The following Text Proposal should be accepted.
Summary

Based on the above discussions, we have the following observations and proposals:

Observation 1: The current running TS 38.322 will result in error control of UM RLC reordering window when SN wrap around occurs. It may accelerate the forwarding movement of the receiving window and loss more packets.
Observation 2: The transmitting side of AM RLC entity cannot transmit any new packet when SN wrap around occurs. 

Observation 3: The receiving side of AM RLC entity may discard the packet which is supposed to place in the buffer when wrap around occurs. This will result in unnecessary retransmission and delay which will trigger RRC re-establishment.
Proposal 1: Follow LTE, a modulus base shall be used when performing arithmetic comparisons of state variables or SN values.

Proposal 2: The following Text Proposal should be accepted.
References

3GPP TS 36.322 v14.1.0: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification".
Annex: Text Proposal

7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.

All state variables and all counters are non-negative integers.

All state variables related to AM data transfer can take values from 0 to 4095 for 12 bit SN or from 0 to 262143 for 18 bit SN. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 4096 for 12 bit SN and 262144 for 18 bit SN).

All state variables related to UM data transfer can take values from 0 to 63 for 6 bit SN or from 0 to 4095 for 12 bit SN. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 64 for 6 bit SN and 4096 for 12 bit SN).

When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used.

TX_Next_Ack and RX_Next shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. RX_Next <= SN < RX_Next + AM_Window_Size is evaluated as [RX_Next –RX_Next] modulo 2[sn-FieldLength] <= [SN –RX_Next] modulo 2[sn-FieldLength] < [RX_Next + AM_Window_Size VR(R) –RX_Next] modulo 2[sn-FieldLength]).

RX_Next_Highest– UM_Window_Size shall be assumed as the modulus base at the receiving side of an UM RLC entity. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. (RX_Next_Highest– UM_Window_Size) <= SN < RX_Next_Highest is evaluated as [(RX_Next_Highest– UM_Window_Size) – (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength] <= [SN – (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength] < [RX_Next_Highest– (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength]).
<Omitting the rest>
Transmitting window
2137
2049
2135
4094
4095
2136
…
2134
TX_Next_Ack
…
2138
2139
Transmitting window
2137
2049
2135
4094
4095
2136
…
2134
TX_Next_Ack
…
2138
2139
0
2048
2048
(a)
(b)
TX_Next
TX_Next



(a)
Receiving window
2137
2048
2135
4094
4095
2136
…
2134
RX_Next
RX_Next_Status_Trigger
…
RX_Next_Highest
2138
2139
0
RX_Highest_Status
86
(b)
Receiving window
2137
2048
2135
4094
4095
2136
…
2134
RX_Next
RX_Next_Status_Trigger
…
RX_Next_Highest
2138
2139
0
RX_Highest_Status



37
31
35
62
63
36
…
34
RX_NEXT_Reassembly
RX_Timer_Trigger
…
Reassembly window
RX_NEXT_Highest
38
39
0
(a)
37
31
35
62
63
36
…
34
RX_NEXT_Reassembly
RX_Timer_Trigger
…
Reassembly window
RX_NEXT_Highest
38
39
0
35
36
(b)
4
…



