
3GPP TSG-RAN WG2 Meeting #99
 R2-1708979
Berlin, Germany, 21st –25th August 2017
Agenda item:
 9.3
Source:
 Qualcomm Incorporated

Title:
 Comparison Study on Deflate and APDC

Document for: Discussion

1. Introduction
Deflate, described in RFC 1951, is based on LZ77 combined with Huffman codes. Data is compressed as a combination of encoded bytes ("literals") and matching strings, where the strings are to be found in the preceding uncompressed data. Each match is a length and a distance back from the current position. The literals and lengths are combined into one Huffman code tree and the distances in a separate code Huffman tree. Deflate compresses an input data file in blocks, where each block is compressed separately.
Deflate offers three modes of compression, and each block can be in any mode: No compression, fixed Huffman codes (compression with fixed code tables) and Dynamic Huffman codes.
· No compression: No compression mode is used when the files are to be segmented without compression. This mode uses no code tables.
· Fixed Huffman codes: Two code tables are built into the Deflate encoder and decoder and the code tables are not written on the compressed stream. Literals and match lengths are located in the first table and are replaced by a prefix code that’s output to the compressed stream. Distances are located in the second table and are replaced by special prefix codes that are output to the compressed stream.
· Dynamic Huffman codes: In dynamic Huffman mode, two prefix code tables are generated, one for the literals/lengths and the other for the distances. Huffman code tree is generated based on the alphabet symbols in descending order of their probabilities. The tree is represented in sequence of code lengths which is further compressed by run length encoding.
In this contribution, we shall discuss the complexity of Huffman Encoding and comparison with APDC.
2. Disadvantages of Huffman Encoding
2.1. Computationally Expensive

Dynamic Huffman approach has the advantage over fixed Huffman codes that shorter length codes can be assigned to frequently occurring symbols thus improving the compression efficiency. However for variable length encoding, compressor has to build a binary tree, the leaves of which represent the symbols of the source alphabet. The code length for these symbols equals their depth in the tree (that is, their distance to the root node). Tree is updated for each symbol and when the probability distributions change rapidly with each symbol, compressor has to build a large number of nodes in the tree to keep them accurate with respect to the changing probabilities and to stay compliant with the required structure of the Huffman tree.
 In figure 1, the prefix code is defined in Huffman tree in which two edges descending from each non-leaf node are labeled 0 and 1 and in which the leaf nodes correspond one-for-one with are labeled with the symbols of the alphabet then the code for a symbol is the sequence of 0's and 1's on the edges leading from the root to the leaf labeled with that symbol.
 /\ Symbol Code

 0 1 ------ ----

 / \ A 00

 /\ B B 1

 0 1 C 011

 / \ D 010

 A /\

 0 1

 / \

 D C

 Figure 1: Huffman Tree with alphabet symbol and codes
For an alphabet with known symbol frequencies, optimal prefix codes are constructed where all the Huffman codes for an alphabet of a given bit length have lexicographically consecutive values and shorter codes lexicographically precede longer codes. So figure 1 will be recoded as below if the order of the alphabet is ABCD where 0 precedes 10 which precedes 11x, and 110 and 111 are lexicographically consecutive.
 Symbol Length Code
 ------ ------ ----

 A 2 10

 B 1 0

 C 3 110

 D 3 111

 If the probability distribution changes from ABCD with bit length 2, 1, 3, 3 to bit lengths 3,3,3,3 the code value will also be changed and the tree will be updated as per the code values.
 Symbol Length Code

 ------ ------ ----

 A 3 010

 B 3 011

 C 3 100

 D 3 101

Thus Huffman encoding is computationally expensive to build the Huffman tree for variable code lengths and is a slow process.

Observation 1: Huffman encoding is slow and computationally expensive due to building the Huffman tree

2.2. Computation Time Simulation
Table 1 shows the total computation time for compressing the pcap file. Assumptions used for compression efficiency simulation have been used for computation time simulation.
It can be seen from the table below, Deflate consumes on an average twice as much computation time as APDC in 7 files with traffic.
	Input File
	8KB Memory Compression Efficiency
	Total Computation time for compression (milliseconds)

	
	Deflate
	APDC
	APDC

	Deflate
	Deflate Ratio to APDC

	Input traffic 1: FTP data-client-CMCC
	51.69%
	54.74
	0.339

	0.256

	0.755162

	Input traffic 2: FTP data-server-CMCC
	46.02%
	50.39
	0.431

	0.340

	0.788863

	Input traffic 3: SIP signalling-CMCC UE 1
	86.99%
	85.61
	1.586
	 1.984

	1.250946

	Input traffic 4: SIP signalling-CMCC
	84.94%
	82.16
	 1.626

	 1.268

	0.779828

	Input traffic 5: SIP signalling-CMCC
	87.31%
	85.94
	1.902

	1.427

	0.750263

	Input traffic 6: Video data-CMCC (duration: ~6s)
	65.56%
	62.04
	 0.846

	 1.030

	1.217494

	Input traffic 7: Web surfing-CMCC
	66.99%
	67.75
	121.334

	216.307

	1.78274

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	73.37%
	78.44
	64.664

	155.346

	2.402357

	Input traffic 9: Video data-MTK (duration: ~1hr)
	61.26%
	73.98
	123.627

	395.100

	3.195904

	Input traffic 10: Long period ftp-MTK
	63.91%
	75.34
	 41.654

	197.310

	4.73688

	Input traffic 11: Multiple IP flows-QC
	73.03%
	75.32
	232.762

	545.619

	2.344107

 Table 1: Computation Time Simulation
Observation 2: In 7 out 11 RAN2 agreed PCAP files (marked in yellow in Table 2), Deflate algorithm compression time is 1.2 times to 4.7 time of APDC compression time.
2.3. Memory Requirements
Deflate compression and decompression requires additional memory besides the 32KB sliding window memory for storing the literal and length alphabets and distance codes along with the additional bits, table for fixed Huffman encoding and decoding. Inflate code file specifies additional 7KB of memory required for the decompression. Compressor and decompressor have to store the fixed and dynamic Huffman tables , index bits for length and distance codes and starting table for length/literal and distance codes, work area for code table building, temporary storage for code lengths.
As per RFC 1951, section 3.2.7 on dynamic Huffman compression block format requires an additional ~ 300 bytes ((5 bits (for HLIT) + 5bits (for HDIST) + 4(for HCLEN) + 19 ((for HCLEN + 4) * 3) + (257+ 31) * 7 (for HLIT +257) + (1+31)*7 (for HDIST +1) + 2 (BTYPE). Static fixed codes takes 544 bytes, 320 bytes for temporary storage for code lengths , 288 bytes for work area for code table building . Flow chart ,figure 2 , describes the block format for all the compression modes.

[image: image1.emf]BLOCK HEADER (3 bit)

COMPRESSION TYPE (2 bits), LAST BLOCK (1 bit)

BLOCK HEADER (3 bit)

COMPRESSION TYPE (2 bits), LAST BLOCK (1 bit)

Compression Type

Compression Type

Dynamic Huffman

Dynamic Huffman

Static Huffman

Static Huffman

No compression

No compression

Skip to next byte boundary

Skip to next byte boundary

2 bytes LEN

2 bytes LEN

2 bytes NLEN

2 bytes NLEN

LEN DATA BYTES

LEN DATA BYTES

COMPRESSED DATA

COMPRESSED DATA

END OF BLOCK

END OF BLOCK

HLIT 5 Bits: Length/Literal codes -257

HLIT 5 Bits: Length/Literal codes -257

HDIST 5 Bits: Distance codes -1

HDIST 5 Bits: Distance codes -1

HCLEN 4 Bits: Code Lengths-4

HCLEN 4 Bits: Code Lengths-4

(HCLEN + 4) X3 Bits: Code Lengths for

code length alphabet

(HCLEN + 4) X3 Bits: Code Lengths for

code length alphabet

HLIT + 257 Code Lengths for literals/

length alphabet

HLIT + 257 Code Lengths for literals/

length alphabet

HDIST +1 Code Lengths for distance

alphabet

HDIST +1 Code Lengths for distance

alphabet

COMPRESSED DATA

COMPRESSED DATA

END OF BLOCK

END OF BLOCK

LAST BLOCK

LAST BLOCK

 Figure 2: Flow chart for block format for compression modes
Observation 3: Additional memory upto 7K bytes required for Deflate at both compressor and decompressor
2.4. Overhead

The block compressed with static Huffman codes contains a Huffman table beforehand, and therefore header information is not added to the block. However, in the block compressed with dynamic Huffman codes, Huffman coding assigns variable bit length codes to symbols depending on their frequencies, so that the Huffman table must be added to the block as header information to the decompressor for assisting in decoding the compressed output. The code table is sent at the beginning of the compressed block and causes additional overhead .
 Figure 1 and tables specified in section 2.1 describes how the tree is built and how the code values or frequency of the symbols in an alphabet are sent to the decompressor to decode the Huffman codes.
Observation 4: Dynamic Huffman Encoding causes additional overhead by sending code tables to the decompressor

2.5. Susceptible to Error
Huffman Encoding is sensitive to transmision errors and an error in a sequence of variable length codes can cause decoder to lose synchronization, leading to praopagation of the error into decoded sequence. Deflate as specified in RFC 1951 also does not have a checksum to detect errors and also has no mechanism to indicate to decompressor that the packet is compressed after recovery from the error. It was proposed by other firms to add one byte of PDCP header for checksum which would reduce the compression efficenecy and has not been verified. Also, if checksum is added even then it is imperative for the compressor to indicate to decompressor if a packet is compressed after error is detected and the flow is reset. It is not sufficient to just rely on the RRC signaling from eNB to inform UE of UDC reset. Figure 3, depicts the need for checksum failure and to indicate that the packet transmitted by the compressor is compressed after reset.
In figure 3, UE PDCP compressed packet 1,2 and 3 and transmitted it to eNB. Packet 1 reaches eNB, eNB detects decompression error and notify UE about the error via RRC signaling. UE and eNB both reset UDC compression memory and UE compresses packet 4 after UDC reset. Packet 2 and 3 were received by the eNB after detecting the checksum failure and resetting the buffer. eNB continues to decompress the received packets which were erroneous and the proces sis repeated for detecting checksum failure and indiacting to UE unless the UE indicates to eNB that the packet transmitted is after the reset as shown in red.

[image: image2.emf]Compressed Packet 1

Compressed Packet 1

Checksum failure (Reset buffer)

Checksum failure (Reset buffer)

UE (compressor)

UE (compressor)

eNB (decompressor)

eNB (decompressor)

Compressed Packet 2

Compressed Packet 2

RRC Connection Reconfiguration (Reset)

RRC Connection Reconfiguration (Reset)

Compressed Packet 3

Compressed Packet 3

Resets buffer

Resets buffer

Compressed Packet 4 after buffer reset with

packet action 101

Compressed Packet 4 after buffer reset with

packet action 101

eNB doesn’t know whether to drop or

decode packet 3 which is errorneous

eNB doesn’t know whether to drop or

decode packet 3 which is errorneous

eNB resets buffer and continues with

the first packet received with packet

action 101

eNB resets buffer and continues with

the first packet received with packet

action 101

Checksum failure on decoding packet

3 (Reset buffer)

Checksum failure on decoding packet

3 (Reset buffer)

Process repeats for sending RRC Connection Reconfiguration (Reset) and resetting the buffers

but eNB will not know which packet is compressed after UE reset the buffer

Process repeats for sending RRC Connection Reconfiguration (Reset) and resetting the buffers

but eNB will not know which packet is compressed after UE reset the buffer

 Figure 3: Checksum failure and Recovery
Observation 5: Deflate is vulnerable to transmisison errors that can cause the whole Huffman tree to be incorrectly decoded. Furthermore, Deflate does not have checksum and cannot indicate to decompressor if a packet is compressed after recovery.

2.6. Full packet compression

Deflate has the following compression options- No compression, Compression with Fixed Huffman codes and compression with dynamic Huffman codes. Unlike APDC, it does not give the flexibility to the compressor to select between header vs full packet compression without wasting resources on both transmitted and receiver side. Eg uncompressible files will benefit mostly from header only compression. Also, In APDC if current packet matches the previous packet, the compressed metadata is not sent to the decompressor resulting in increased compression gain.
Observation 5: Deflate does not have the flexibility to perform header only compression .
2.7. Comparison summary for APDC and Deflate
	Table 1 Evaluation and Comparisons of Deflate and APDC

	Evaluation using RAN2 agreed criteria
	Deflate
As in RFC 1951
	APDC, as in
TR 36.754

	1). Reliability: error detection at decompressor
	No
 DEFLATE (RFC 1951) does not include checksum to detect decompression error.
Not able to indicate to decompressor whether a packet is compressed after UDC recovery/reset.
	Yes (4 bits checksum for compression memory)

	2). Compressed data is Byte-aligned
	No
DEFLATE does not guarantee byte-alignment
	Yes.

	3). Computation complexity
	RAN2 agreed in TR 36.754. Deflate requires more computation due to Huffman encoding.
In 7 out 11 RAN2 agreed PCAP files (marked in yellow in Table 1), Deflate algorithm compression time is 1.2 times to 4.7 time of APDC compression time.

	4). Compression efficiency
	2 solutions are similar.

	5). Memory size
	Deflate additionally consumes upto 7KB compression memory at both compressor and decompressor for storing dynamic Huffman codes/Tree, fixed Huffman codes, length codes and code table.

	Qualitative Evaluation
	Deflate
As in RFC 1951
	APDC, as in
TR 36.754

	1). Header only Compression
	No
	Yes. APDC gives flexibility to select between header vs full packet compression

	2) Overhead
	Yes due to transmitting Huffman code tables to decompressor for decoding Huffman tree
	No Huffman coding employed

3. Conclusion
Following are the observations from the above discussion and the conclusion from these observations
Observations:
Observation 1: Huffman encoding is slow and computationally expensive due to building the Huffman tree.

Observation 2: Deflate and APDC compressor simulation results show Deflate consumes more computation time than APDC for compressing the same file. Observed in 7 files with traffic.

Observation 3: Additional memory upto 7KB required for Deflate at both compressor and decompressor.

Observation 4: Dynamic Huffman Encoding causes additional overhead by sending code tables to the decompressor.

Observation 5: Deflate does not have the flexibility to perform header only compression .

Proposal: To capture the above observations and comparison results on computation complexity of both APDC and Deflate into TR 36.754.
4. Reference
[1] IETF RFC 1951,"DEFLATE Compressed Data Format Specification”
[2] 3GPP TR 36.754 “Study on UL data compression for E-UTRA”
PAGE
7

_1562530007.vsd

_1562574495.vsd

