3GPP TSG-RAN WG2 Meeting #96
R2-168527
Reno, USA, 14 – 18 November 2016

Agenda item:

9.2.1.1
Source:
Intel Corporation

Title:
Concatenation in NR
Document for:

Discussion and Decision
1 Introduction
Whether to move concatenation from RLC to MAC has been discussed in RAN2 for several meetings. In RAN2#95bis meeting, after presenting two way forward documents, it was agreed to make final decision at RAN2#96 meeting.

	R2-167190
Way forward for concatenation discussion
Ericsson, Huawei, ZTE
discussion

-
New document

=>
Noted

R2-167199
On concatenation in NR
Samsung, Alcatel-Lucent Shanghai Bell, ASUSTeK, Broadcom, CATT, CHTTL, Convida wireless, ETRI, HTC, Innovative Technology Lab Co., Intel, InterDigital, IPCom, KT Corp., LG Electronics Inc, Nokia, NTU, OPPO, Panasonic, Qualcomm Incorporated, Verizon Wireless, Xiaomi
discussion

Rel-14
FS_NR_newRAT

-
Nokia think that the number of companies supporting is more than the show of hands and suggest that we ask if there is a sustained objection.

=>
RAN2 aim to make a final decision at the next meeting.

=>
Proponents of solutions to next meeting must identify the what issues (e.g. easing implementation aspects, overhead, etc) are being addressed by their proposals.

=>
Noted

In this contribution, we discuss further details on concatenation in NR.
2 Discussion
2.1 Challenging requirements on transmitter side processing

In NR, there is significant increase of peak data rate requirement compared with what can be achieved by LTE today: the target for peak data rate should be 20Gbps for downlink and 10Gbps for uplink [1]. There is also tightened requirement for the processing time. For example for eMBB, the target for user plane latency should be 4ms for UL, and 4ms for DL, where user plane latency is defined as the time it takes to successfully deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio interface in both uplink and downlink directions [1]. In RAN1#85 meeting, there were agreements related to processing time as below [6]:

	· NR design should strive at least to enable the possibility for

· Corresponding acknowledgement reporting shortly (in the order of X µs) after the end of the DL data transmission

· Corresponding uplink data transmission shortly (in the order of Y µs) after reception of UL assignment

· Note: may depend on e.g. UE capability/category, payload size, etc

· FFS: X and Y in the order of a few tens of or hundreds of micro sec is feasible

In RAN1#86bis meeting, following was agreed:

	Agreements:
· For slot-based scheduling, NR specification should support the following

· DL data reception in slot N and corresponding acknowledgment in slot N+K1

· All UEs should support K1≥1 with exact values for K1 FFS

· Some UEs may support K1=0 (FFS conditions)

· UL assignment in slot N and corresponding uplink data transmission in slot N+K2

· All UEs should support K2≥1 with exact values for K2 FFS

· Some UEs may support K2=0 (FFS conditions)

When K2=0 (as highlighted above), there is only one OFDM symbol processing time available. For larger subcarrier spacing (e.g. 60 kHz), the OFDM symbol is shorter compard with LTE. Considering 60 kHz subcarrier spacing, one OFDM symbol length is only 17.84 µs (which is 1/4 of LTE OFDM symbol length). Compared with LTE (around 4 ms in case of FDD), uplink processing time in NR is tightened significantly (around 224 times increase). It should be noted that within such short time, UE should complete DL control channel (PDCCH as in LTE terminology) decoding, preparation of layer 2 (MAC, RLC processing) and physical layer.
Observation 1: Uplink processing time in NR is reduced significantly compared with LTE.
Supporting very high peak data rate and very stringent Tx/Rx processing time becomes a challenge for implementation. This is one of the main motivations to remove concatenation from RLC.
2.2 Details of removing concatenation from RLC
Currently in LTE, both concatenation and segmentation are done in RLC layer while MAC layer performs multiplexing for different logical channels (including MAC CEs). Putting concatenation at RLC layers results in rather complicated RLC PDU formats. For example, in a RLC PDU, the relevant information for each RLC SDU is indicated. In addition, when an RLC PDU needs to be retransmitted, if the available resource is less compared with original RLC PDU size, re-segmentation is performed in RLC layer, which requires another RLC PDU format. Concatenation in RLC layer also means that no RLC PDU can be generated in advance (i.e. in non-real timer manner).

One possibility is to move concatenation to MAC layer, i.e. RLC SDUs are concatenated in MAC layer, instead of RLC layer. The benefits are as follows:

· Except for the potentially last segment, all the RLC PDUs can be generated in advance. This simplifies RLC layer operation in the transmitter side.

· RLC PDU format is simplified. There is no need to indicate the frame info or the LI field. Also the segmentation and re-segmentation operation is unified. The reason is that when concatenation is moved down to MAC layer, in RLC layer, the RLC PDU is either an RLC SDU (PDCP PDU), or a segment of RLC SDU. If there is a need to segment a RLC PDU, it simply results in segments of RLC SDU (even if original RLC PDU is a segment of RLC SDU). For example, in Figure 1 below, RLC PDU with SN=0 is a PDU without segmentation, while RLC PDU with SN=1 and 2 are segmented. Suppose for SN=1, segment with SO=400 is not correctly received and retransmission is needed. If the radio resource cannot accommodate the PDU segment, further segmentation is needed (which is called re-segmentation in LTE). In the example, the segment is further segmented into two PDU segments, with SO equal to 400 and 600 respectively. However, all the PDU segments have the same PDU format, which means that the segmentation and re-segmentation operation and format are unified.
[image: image1.png]
Figure 1: Unified segmentation and re-segmentation
In RAN2#95bis meeting, it was agreed that “SO-based segmentation can be considered for both segmentation and resegmentation as a baseline in NR user plane to support high data rate”. Removing concatenating from RLC naturally enables SO-based segmentation as discussed above. Consequently, the RLC PDU format can be simplied accordingly, with only two RLC PDU format to be considered. Formats for AMD PDU and AMD PDU segment are shown below in Figure 2 and Figure 3, respectively. The fields D/C, P, SN have the same meaning as in LTE. Field SO indicates the position of the AMD PDU segment in bytes within the original RLC SDU. Field SF denotes whether this is an AMD PDU, or an AMD PDU segment. Field LSF denotes whether the current segment is the last segment. For both segmentation and resegmentation, AMD PDU segment format in Figure 3 is used. As a reference, LTE AMD PDU and AMD PDU segments format (16 bit SN and SO) are shown in Annex A.

[image: image2.emf]R1SND/CSFPLSFSNSNData...Oct 1Oct 2Oct 3Oct 4R1Oct N

Figure 2: AMD PDU format

[image: image3.emf]R1SND/CSFPLSFSNSNData...Oct 1Oct 2Oct 3Oct 4Oct NR1SOOct 5Oct 6SO

Figure 3: AMD PDU segment format
Above user plane option was discussed in email discussion [95#26] as Alternative 1 and 3 in [2]. Alternative 3 is better than Alternative 1 since adjacency of MAC sub-header and RLC header is friendlier for Tx processing, since for each PDCP PDU, both MAC and RLC headers can be prepared together.
[image: image4.png]
Figure 4: Alternative 1 in email discussion [2]
[image: image5.png]
Figure 5: Alternative 3 in email discussion [2]
2.3 Implementing SO based segmentation in LTE UP architecture

In this section, we investigate how to implement SO based segmentation in existing LTE UP architecture (including Alternative 8). Firstly, we’d like to review how Framing Info (FI) field is used in LTE. According to section 6.2.2.6 of TS 36.322 [5], “The FI field indicates whether a RLC SDU is segmented at the beginning and/or at the end of the Data field. Specifically, the FI field indicates whether the first byte of the Data field corresponds to the first byte of a RLC SDU, and whether the last byte of the Data field corresponds to the last byte of a RLC SDU.” Segmentation offset is defined in section 6.2.2.7 of TS 36.322 [5], “The SO field indicates the position of the AMD PDU segment in bytes within the original AMD PDU. Specifically, the SO field indicates the position within the Data field of the original AMD PDU to which the first byte of the Data field of the AMD PDU segment corresponds to.”

Current LTE principle of segmentation and re-segmentation is as follows. For the initial transmission of a RLC PDU, RLC performs concatenation/segmentation to generate the RLC PDU with a SN. For retransmission, if the available resource cannot hold the original RLC PDU, re-segmentation is performed on the original RLC PDU. In that case, same SN is used as original AMD PDU while SO is added to indicate the offset within the original AMD PDU.

There is a fundamental difference between FI based approach and SO based approach. In FI based approach, since different PDUs are associated with different SNs, reassembly can be done based on FI. For SO based approach, AMD PDU segments to be reassembled shared the same SN, therefore reassembly is done based on SO. If LTE UP principle of keeping concatenation in RLC is used, using SO based approach for segmentation might not bring much gain, while the header overhead is increased for the SO field (which is 15 or 16 bits in LTE).

Nevertheless, to apply the above principle while using SO based approach for both segmentation and re-segmentation, following approach should be used:

· It is still necessary to indicate whether RLC SDU is segmented at the end of the Data field, i.e. keeping the 2nd bit in FI field. The reason is that if such information is known, the last RLC SDU can be directly processed without waiting for the next RLC PDU to confirm that it is not segmented. This is beneficial from user plane latency perspective.
· Another SO field (denoted as SO2) can be used to indicate whether a RLC SDU is segmented at the beginning of the Data field. There are two options:

· Reuse the existing FI field. If the first byte is set to 1 (meaning first byte of the Data field does not correspond to the first byte of a RLC SDU), then SO2 field is present. Otherwise, SO2 field is not present. An example is shown in Figure 6 and Figure 7 below in for AMD PDU and AMD PDU segment, respectively. It should be noted that there are two SO fields for AMD PDU segment.
· SO2 field is always present, which means that it is only necessary to keep one bit in FI field to indicate whether RLC SDU is segmented at the end of the Data field, i.e. keeping the 2nd bit in FI field. The PDU format is similar to that shown in Figure 6 and Figure 7, with the difference that FI field only contains one bit (indicating whether RLC SDU is segmented at the end of the Data field).

[image: image6.emf]ELI1LI1D/CRFPFIER1SNDataOct NOct 1Oct 2Oct 3Oct 4...ELIKLIKOct [2*K+6]...Oct [2*K+5]Oct [2*K+4]SNR1Oct 5SO2Oct 6Oct 7SO2

Figure 6: SO fields for AMD PDU

[image: image7.emf]R1SNSO2SO2LSFOct 3Oct 4LI2ELI2ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 5Oct 6Oct 7...LIKELIKELIK-1LIK-1Oct [6+1.5*K+1]...Oct [6+1.5*K]Oct [6+1.5*K-1]Oct [6+1.5*K+2]Oct 8SOSOOct 9Oct 10

Figure 7: Double SO fields for AMD PDU segment
From above PDU formats, it can be seen that if LTE principle of segmentation and re-segmentation is kept, using SO based segmentation cannot decrease the RLC layer complexity. In addition, there is a drawback of increased overhead.
Observation 2: Using SO based segmentation when concatenation is kept in RLC does not decrease RLC layer complexity; on the other hand, header overhead is increased.
2.4 Comparison with LTE based approaches
Rx processing comparison
During email discussion, Alternative 8 was proposed as shown in Figure 8 below. The RLC/MAC transmitter places the headers in the end of the RLC/MAC PDU, respectively. The headers can be calculated in parallel while the data is forwarded to PHY, and the RLC and MAC headers can be added (and hence forwarded to PHY) towards the end of the transmission of an RLC and MAC PDU respectively.
[image: image8.png]
Figure 8: Alternative 8 in email discussion [2]
From receiver perspective, putting the RLC/MAC headers at the end increases the receiver processing delay. One argument against Alternative 1 and 3 is that there are additional memory calls when headers are scattered (RLC header in case of Alternative 1, MAC/RLC header in case of Alternative 3) [3]. However it should be emphasized that this is not about receiver complexity, but actually about user plane latency, i.e. additional memory calls might increase user plane latency (note that even in current LTE, PDCP header is still scattered in the RLC PDU). It should be noted that the memory access latency (without cache hit) is typically in the order of tens of nanoseconds [4]. Alternative 8 actually prohibits any implementation from processing MAC/RLC/PDCP until a complete transport block is received. Comparison of layer 2 receiver processing of Alternative 3 and 8 is shown in Figure 9 below. It can be seen that for Alternative 3, layer 2 can start processing in time t1, just after PHY processing (note that complete PDU processing might come later, but at least header can be processed). On the contrary, for Alternative 8, layer 2 can only start processing in time t2, after a complete transport block is processed by physical layer. The difference between t1 and t2 is around 1 slot minus one OFDM symbol. In the numerology with LTE subcarrier spacing (15 kHz), the length of a slot is 1 ms. Even for numerologies with larger subcarrier spacing (e.g. 30 or 60 kHz), the length of a slot is still in the order of hundreds of microseconds. Compared with such increase of Rx latency, the potential increase of tens of nanoseconds due to memory call is negligible.
[image: image9.png]
Figure 9: Comparison of Alternative 3 and 8 for receiver processing
Observation 3: Alternative 8 has significant impact on layer 2 receiver processing delay in the receiver side.

It was agreed in RAN2#95bis meeting, “RAN2 should consider both the processing of both the transmitter and the receiver when evaluating whether to divert from the LTE-baseline.” The above observation also implies that Alternative 8 has significant impact on user plane latency.
Overhead comparison
In the following discussion, we use the following terminologies:

· LTE approach: denotes the current LTE approach where concatenation is in RLC and MAC/RLC headers are located in the beginning of the corresponding PDU.

· MAC Concatenation approach: denotes the approach that concatenation is removed from RLC layer. It can refer to either Alternative 3 or 1 in email discussion [2]. This approach is discussed in detail in section 2.2.
· Alternative 8: the approach was discussed in email discussion [2].

For header overhead comparison, we use the term LTE based approach to denote both LTE approach and Alternative 8 since the header overhead is the same for the two approaches.

Following was assumed for the overhead evaluation:

· MAC and RLC headers are computed while PDCP headers are not considered (as the overhead is assumed to be the same for different approaches).

· MAC sub-header overhead is 3 byte for one TBS in LTE based approach, and 3 byte for each RLC PDU for MAC concatenation approach.

· For MAC concatenation approach: 3 byte overhead for AMD PDU and 5 byte for AMD PDU segment.

· For LTE based approach: the length of the fixed part in AMD PDU is 3 bytes. Each E and LI of the extension part is 2 bytes.

Then the overall header overhead is as following (assuming the first and last RLC SDU within RLC PDU is always segmented. Note that this is rather pessimistic assumption for MAC concatenation approach, as SO is always transmitted for the first and last RLC SDU):

· For MAC concatenation approach: if there are k RLC SDUs, MAC overhead is 3k bytes. RLC overhead is 5 bytes, if k = 1; otherwise, 10 + (k – 2) * 3 = 3k + 4 bytes. Therefore the total overhead of RLC and MAC is 8 bytes, if k = 1; otherwise, 6k + 4 bytes.
· For LTE based approach: if there are k RLC SDUs, RLC overhead is 3 + 2 * (k – 1) = 2k + 1 bytes. The total overhead of RLC and MAC is 2k + 4 bytes.
Therefore the MAC and RLC overhead difference for MAC concatenation approach and LTE based approach is 2 bytes, if k = 1; otherwise, 4k bytes.
For typical IP packet size of 1500 bytes, the additional overhead ratio is between
[image: image10.wmf]1500

4

1500

2

～

, which is 0.133% ~ 0.267%. When considering jumbo frame (9000 bytes) and super jumbo frame (64k bytes), such additional overhead ratio is even smaller.
Observation 4: For typical IP packets, additional overhead ratio due to removing concatenation from RLC is negligible.
For small packet, it seems that the overhead ratio might be larger. However it should be noted that for typical services with small packet (e.g. VoIP), there is one RLC SDU per MAC PDU since the data is generated in a periodical manner. In that case, there is no additional overhead from segmentation (noting that above analysis of 2 byte overhead is from SO field).
Observation 5: For typical small packet services like VoIP, there is no additional overhead due to removing concatenation from RLC.
In Table 1 below, comparison of different options on concatenation is shown.
Table 1: Comparison of different options on concatenation
	Options
	Tx processing time
	Rx processing time
	Unified SO based segmentation
	Header overhead

	LTE approach
	Baseline (
	Baseline (
	Not friendly to support unified SO based segmentation (
	Baseline (

	Alternative 8
	Less (
	Significantly increase Rx processing time (
	Not friendly to support unified SO based segmentation (
	Baseline (

	MAC concatenation approach
	Less (
	Similar to baseline (
	Friendly to support unified SO based segmentation (
	No or negligible increase of header overhead (

Considering the above discussion and various tradeoffs, it is proposed to remove concatenation from RLC layer.

Proposal 1: Concatenation function is removed from RLC layer.
3 Conclusion
In this contribution, we investigate further details on concatenation in NR. We have the following observations:
Observation 1: Uplink processing time in NR is reduced significantly compared with LTE.
Observation 2: Using SO based segmentation when concatenation is kept in RLC does not decrease RLC layer complexity; on the other hand, header overhead is increased.
Observation 3: Alternative 8 has significant impact on layer 2 receiver processing delay in the receiver side.
Observation 4: For typical IP packets, additional overhead ratio due to removing concatenation from RLC is negligible.
Observation 5: For typical small packet services like VoIP, there is no additional overhead due to removing concatenation from RLC.
We propose the following:
Proposal 1: Concatenation function is removed from RLC layer.

References
[1] 3GPP TR 38.913, “Study on Scenarios and Requirements for Next Generation Access Technologies”
[2] R2-166904, Ericsson, “Report from [95#26] Concatenation (Ericsson)”

[3] R2-167190, Ericsson et al, “Way forward for concatenation discussion”
[4] https://en.wikipedia.org/wiki/CAS_latency
[5] 3GPP TS 36.322, “Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Link Control (RLC) protocol specification”
[6] Draft Report of 3GPP TSG RAN WG1 #85 v0.1.0
Annex A
LTE AM RLC PDU formats (16 bit SN, 16 bit SO, 16 bit LI)

As reference, AMD PDU and AMD PDU segment formts in LTE RLC specification (TS 36.322 [5]) is copied below.

[image: image11.emf]ELI

1

LI

1

D/CRFPFIER1

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

ELI

K

LI

K

Oct [2*K+4]

...

Oct [2*K+3]

Oct [2*K+2]

SN

R1

Oct 5

Figure 6.2.1.4-4a: AMD PDU with 16 bit SN (length of LI field is 15 bits)

[image: image12.emf]R1

SN

SO

SO

LSF

Oct 3

Oct 4

LI

2

ELI

2

ELI

1

LI

1

D/CRFPFIE

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K

ELI

K

ELI

K-1

LI

K-1

Oct [4+1.5*K+1]

...

Oct [4+1.5*K]

Oct [4+1.5*K-1]

Oct [4+1.5*K+2]

Oct 8

Figure 6.2.1.5-3a: AMD PDU segment with 16 bit SN and with 16 bit SO (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)
9

_1539087188.vsd
R1

SN

D/C

SF

P

LSF

SN

SN

Data

...

Oct 1

Oct 2

Oct 3

Oct 4

R1

Oct N

_1539087335.vsd
SN

D/C

SF

P

SO

LSF

SN

SN

SO

Oct 5

Oct 6

Data

...

Oct 1

Oct 2

Oct 3

Oct 4

Oct N

R1

R1

_1538995061.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

R1�

SN�

�

Data�

Oct [2*K+5]

Oct [2*K+4]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+6]

SN�

R1�

Oct 5

SO2�

SO2�

Oct 6

Oct 7

_1539079082.unknown

_1500815936.vsd
�

SO�

SO�

LSF�

Oct 3

Oct 4

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

R1�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [4+1.5*K+1]

...

Oct [4+1.5*K]

Oct [4+1.5*K-1]

Oct [4+1.5*K+2]

SN�

Oct 8

_1538991411.vsd
�

SO2�

SO2�

LSF�

Oct 3

Oct 4

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

R1�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [6+1.5*K+1]

...

Oct [6+1.5*K]

Oct [6+1.5*K-1]

Oct [6+1.5*K+2]

SN�

Oct 8

SO�

SO�

Oct 9

Oct 10

_1500812019.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

R1�

SN�

�

Data�

Oct [2*K+3]

Oct [2*K+2]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+4]

SN�

R1�

Oct 5

