Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #93bis
R2-162318
Dubrovnik, Croatia, 11-15 April 2016
Agenda Item:
7.14.2.1
Source:
Huawei
Title:
NB-IoT ASN.1 structure using multiple modules
Document for:
Discussion, Decision

1 Introduction

During email discussion [93#40] after RAN2#93, it was suggested that the ASN.1 for NB-IoT could be integrated into TS 36.331 by using separate modules for the LTE and NB-IoT messages. This document presents an example of such an approach and considers the implications.
2 Discussion

2.1 Requirements on the ASN.1 code
The NB-IoT ecosystem will include single-mode and multi-mode devices, on both the UE and network sides. These device types have different needs for their ASN.1 code, leading to different requirements that must all be met by a single body of code.

· Single-mode UEs: Because of the need for very-low-cost devices, it needs to be possible for single-mode UEs to compile in only the NB-IoT ASN.1, rather than accepting the code footprint of the unused LTE IEs.

· Multi-mode UEs: A UE supporting both LTE and NB-IoT does not have the same cost constraints as an NB-IoT-only UE, and by definition it needs to be able to support the LTE ASN.1 in its memory somewhere. Our understanding of current RAN2 agreements is that such a device would never be required to support operating in both RATs at the same time, so it may be acceptable for it to instantiate LTE and NB-IoT as separate binaries that do not share a context.
· Single-mode networks: A single-mode NB-IoT base station (“NB-NB”?) may benefit from instantiating only the NB-IoT portion of the ASN.1, in the same way as a single-mode UE, but the need is not as critical since network nodes are in general less constrained than UEs. It may be acceptable for a single-mode network also to have the LTE ASN.1 in its runtime image, but it would be better to avoid this situation if possible. Testing complexity is also a concern—it is widely acknowledged as bad software engineering practice to have untested code on a shipping device, even if it is supposed to be deadcode.

· Multi-mode networks: Network vendors and operators have expressed a strong desire for multi-mode networks to have the ability to instantiate LTE and NB-IoT together in a single image, rather than having two applications running simultaneously on the hardware. For these devices, unlike the multi-mode UEs, it is necessary to build a set of “unified” ASN.1 that supports both RATs.

· Freezing: In Rel-13, the LTE and NB-IoT ASN.1 already have different freeze dates, and it may be necessary for the two to evolve on separate schedules in the future. In addition, an emergency “unfreeze” due to late discovery of an issue in one RAT should not affect the other. This independence is not always possible (some IEs will be shared between the two RATs, and a change in one of these common IEs inevitably affects both), but to the extent possible it should be available.
2.2 Single-module approach

The existing ASN.1 preprocessor mechanism can be adapted easily to allow separate extraction of code for NB-IoT and LTE, as shown in [1], by using one set of preprocessor tags (-- ASN1START/-- ASN1STOP) for LTE and a second set (-- ASN1_NB_START/-- ASN1_NB_STOP) for NB-IoT. As they were used in [1], these tags gave rise to two separate ASN.1 modules, but they could be used for a single module with different contents depending on which RAT was selected in preprocessing.
With a single-module structure, the examples from [1] need to be modified to allow joint compilation; e.g., the BCH PDU types were described as

-- ASN1START

BCCH-BCH-Message ::= SEQUENCE {

message

BCCH-BCH-MessageType

}

BCCH-BCH-MessageType ::=

MasterInformationBlock

-- ASN1STOP
-- ASN1_NB_START

BCCH-BCH-Message ::= SEQUENCE {

message

BCCH-BCH-MessageType

}

BCCH-BCH-MessageType ::=

MasterInformationBlock

-- ASN1_NB_STOP
which results in colliding names if both the LTE and NB-IoT code are compiled. The update discussed in email discussion [93#40] modified this snippet as follows, to differentiate the PDU and type names:
-- ASN1START

BCCH-BCH-Message ::= SEQUENCE {

message

BCCH-BCH-MessageType

}

BCCH-BCH-MessageType ::=

MasterInformationBlock

-- ASN1STOP
-- ASN1_NB_START

BCCH-BCH-Message-NB ::= SEQUENCE {

message

BCCH-BCH-MessageType-NB-13
}

BCCH-BCH-MessageType-NB-r13 ::=

MasterInformationBlock-NB-r13
-- ASN1_NB_STOP
With these names disambiguated, it is possible to compile a single ASN.1 module for LTE only (containing BCCH-BCH-Message as PDU #1), for NB-IoT only (containing BCCH-BCH-Message-NB as PDU #1), or for both (containing BCCH-BCH-Message as PDU #1 and BCCH-BCH-Message-NB as PDU #2—the differing PDU indices do not matter since the PDU number is not encoded). Having different top-level structures for a single ASN.1 module (with a single OID) is unorthodox, but should not result in parsing ambiguities since the receiving device knows whether it is monitoring an LTE or NB-IoT link.

Managing freeze timelines may be a problem with a single module. If the LTE ASN.1 is frozen while the NB-IoT ASN.1 is not, it is nontrivial to guarantee that the LTE portion will be untouched. The rule for editing the code is that only lines not contained between the -- ASN1_NB_START and -- ASN1_NB_STOP tags may be changed, but this rule is more difficult to apply and enforce than the existing “don’t change the ASN.1” rule. For these reasons it may be preferable to have separate modules. The next section discusses two different multiple-module approaches.
2.3 Multiple modules and handling of common IEs
2.3.1 Structure for separate modules

If the LTE and NB-IoT ASN.1 bodies of code are placed in separate modules, the problems of the previous section are eliminated. The module headers might look as follows:
-- ASN1START

EUTRA-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
-- ASN1STOP

[…intervening non-ASN.1 text…]

-- ASN1START

BCCH-BCH-Message ::= SEQUENCE {

message

BCCH-BCH-MessageType

}

BCCH-BCH-MessageType ::=

MasterInformationBlock

-- ASN1STOP
and for NB-IoT,

-- ASN1_NB_START

NBIOT-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
-- ASN1_NB_STOP

[…intervening non-ASN.1 text…]

-- ASN1_NB_START

BCCH-BCH-Message-NB ::= SEQUENCE {

message

BCCH-BCH-MessageType-NB-13
}

BCCH-BCH-MessageType-NB-r13 ::=

MasterInformationBlock-NB-r13
-- ASN1_NB_STOP
A single-mode device compiles and links only its “native” module, a multi-mode device compiles and links both, and the two modules can be managed and frozen independently.
(Note that the examples show separate tags for the two modules: -- ASN1START and -- ASN1STOP for LTE, vs. -- ASN1_NB_START and -- ASN1_NB_STOP for NB-IoT. This separation is not a necessary assumption; a single tag could be used as well, resulting in a slightly different workflow as one “extract and compile” procedure produces both header/object files. The choice of whether to use separate tags in multi-module solutions is related to spec maintenance and organisation, not to code or output requirements.)
A complication arises when we look at IEs that are used in both technologies, however. The next sections show two ways to approach this aspect.

2.3.2 Common IEs: Three-module solution

A significant number of IEs from LTE will need to be reused in NB-IoT. They need to be available to both types of single-mode devices, without causing double-compilation in multi-mode devices, and without extra duplication of code (which is a recipe for maintenance problems).

One solution is a separate common module containing the shared IEs. The common module exports all its type definitions, and each RAT’s module imports them. There is a cost in spec organisation, because the common IEs may need to move from their current positions. For instance, consider the draft code discussed in [93#40], under the Paging message; the common IEs are highlighted.
PagingRecordList ::=

SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord

PagingRecord ::=

SEQUENCE {

ue-Identity

PagingUE-Identity,

cn-Domain

ENUMERATED
{ps, cs},

...

}

-- ASN1_NB_START

PagingUE-Identity ::=

CHOICE {

s-TMSI

S-TMSI,

imsi

IMSI,

...

}

IMSI ::=

SEQUENCE (SIZE (6..21)) OF IMSI-Digit

IMSI-Digit ::=

INTEGER (0..9)
-- ASN1_NB_STOP

-- ASN1STOP

The common IEs are currently defined close to the Paging message, for readability. If separate modules were used in the way suggested, they would need to move into the common module instead. This separation could be maintained in place with another set of preprocessor tags:

PagingRecordList ::=

SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord

PagingRecord ::=

SEQUENCE {

ue-Identity

PagingUE-Identity,

cn-Domain

ENUMERATED
{ps, cs},

...

}

-- ASN1STOP
-- ASN1_COMMON_START

PagingUE-Identity ::=

CHOICE {

s-TMSI

S-TMSI,

imsi

IMSI,

...

}

IMSI ::=

SEQUENCE (SIZE (6..21)) OF IMSI-Digit

IMSI-Digit ::=

INTEGER (0..9)

-- ASN1_COMMON_STOP
However, the interactions between different sets of tags may become less readable and result in maintenance problems.
Freezing practice as it relates to the common IEs needs to be considered as well. Since both the LTE module and the NB-IoT module depend on the common module, in principle the common module should always be frozen first. Some resulting problems can be imagined, e.g., if the common IEs are frozen long before one of the RATs, and later changes reveal a problem in the common portion, but it seems that such situations might need to be handled case by case if they arise.

2.3.3 Common IEs: Two-module solution

An alternative organisation, which preserves the current state of the LTE ASN.1 but does not explicitly identify the common IEs in place, would be to define only an LTE module and an NB-IoT module, with the NB-IoT code importing some IEs directly from the LTE code (not from a common module). With this approach, looking at the same example as above, the Paging message from LTE would be unchanged compared to the current ASN.1:

PagingRecordList ::=

SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord

PagingRecord ::=

SEQUENCE {

ue-Identity

PagingUE-Identity,

cn-Domain

ENUMERATED
{ps, cs},

...

}

PagingUE-Identity ::=

CHOICE {

s-TMSI

S-TMSI,

imsi

IMSI,

...

}

IMSI ::=

SEQUENCE (SIZE (6..21)) OF IMSI-Digit

IMSI-Digit ::=

INTEGER (0..9)
-- ASN1STOP

However, the LTE module would export the common IEs (“EXPORTS PagingUE-Identity, IMSI, IMSI-Digit;” in the header if the export were done explicitly), and the NB-IoT module would import them (“IMPORTS PagingUE-Identity, IMSI, IMSI-Digit FROM EUTRA-RRC-Definitions;”).
With this approach there is no explicit indication that PagingUE-Identity is used in NB-IoT, so every ASN.1 CR to LTE would need to be checked to determine if it might affect NB-IoT as well. In principle this should be normal practice, but realistically it could increase the risk of a mistake in the future.

2.3.4 Inclusion structure

To understand how the two-module and three-module approaches would affect compilation, it may be helpful to envision the interaction between the modules.

The two-module approach is shown in Figure 1. Some portion of the LTE IEs in EUTRA-RRC-Definitions is imported into NBIOT-RRC-Definitions (the horizontal arrow). Compiling the ASN.1 produces two sets of header/object files containing the two modules; a dual-mode device such as a network links the two together, and a single-mode device links only the portion it needs.

[image: image1.emf]EUTRA-RRC-DefinitionsNBIOT-RRC-DefinitionsSingle mode LTESingle mode NB-IoTDual modeNBIOT-RRC-DefinitionsEUTRA-RRC-DefinitionsEUTRA-RRC-DefinitionsNBIOT-RRC-DefinitionsPortion imported by NBIOTIMPORT

Figure 1: Two-module structure

The three-module approach is shown in Figure 2. The distribution of IEs is the same, in the end, but the inclusion hierarchy is one layer deeper because of the common module.

[image: image2.emf]EUTRA-RRC-DefinitionsNBIOT-RRC-DefinitionsEUTRA-NBIOT-Common-RRC-DefinitionsSingle mode LTESingle mode NB-IoTDual modeNBIOT-RRC-DefinitionsEUTRA-RRC-DefinitionsEUTRA-RRC-DefinitionsNBIOT-RRC-DefinitionsEUTRA-NBIOT-Common-RRC-DefinitionsEUTRA-NBIOT-Common-RRC-DefinitionsEUTRA-NBIOT-Common-RRC-Definitions

Figure 2: Three-module structure
It seems agreed based on the email discussion that both structures will work, in the sense of producing the needed code. They meet the functional requirements of the different device classes in the same way; the differences are in spec organisation and ease of maintenance, not in function.
2.4 Comparison

The one-, two-, and three-module structures described above are all possible to use, and meet the basic requirements for different types of devices as described in Section 2.1 above. A comparison of the options, in terms of potential impact on future spec maintenance, is in Table 1.
	
	Location of common IEs
	Extra work for CRs to NBIOT ASN.1
	Extra work for CRs to LTE ASN.1
	Freeze impact

	One-module (requires separate tags)
	N/A
	None
	Check impact if affected IE is within NB tags
	Not possible to freeze separately

	Two-module

(EUTRA+NBIOT)
	In EUTRA module
	None
	Check if affected IE is used in NBIOT module; if so, check impact
	Common IEs always freeze together with LTE

	Three-module

(EUTRA+NBIOT+COMMON)
	In COMMON module
	None
	None
	Common IEs should freeze first, or instability can result. Creating COMMON module affects current ASN.1 freeze.

Table 1: Comparison of organisational options
The main practical distinctions are highlighted in yellow. Considering these differences, we suggest:
Proposal 1: Eliminate the one-module solution.

Proposal 2: If the two-module solution is preferred, provide a way to recognise common IEs easily.
Proposal 3: If the three-module solution is preferred, consider whether the impact to LTE ASN.1 would require reversing the freeze.
For proposal 3, note that the changes should be backward compatible, since the same types are used in the same messages. This sort of major rearrangement while frozen would be unprecedented; however, it could be possible to keep the common IEs physically in the same location, but with different tags, while supporting a three-module solution. We have not fully explored this possibility.
Finally, the ASN.1 coding practices in Annex A of TS 36.331 will need to be updated to capture the group decisions.

Proposal 4: The agreed structure and coding practices should be updated in Annex A.
3 Conclusion
Proposal 1: Eliminate the one-module solution.

Proposal 2: If the two-module solution is preferred, provide a way to recognise common IEs easily.
Proposal 3: If the three-module solution is preferred, consider whether the impact to LTE ASN.1 would require reversing the freeze.

Proposal 4: The agreed structure and coding practices should be updated in Annex A.
4 References
[1]
R2-161877: “ASN.1 handling for NB-IoT” (Neul et al., RAN2#93)

Annex: Proposed structure for three-module solution
This annex shows an example of the three-module structure; it is not a formal proposal but intended to help support discussion. We assume that the NB-IoT and common modules would be separated as different clauses of TS 36.331.
6.x
NB-IoT RRC messages

6.x.1
General message structure

–
NBIOT-RRC-Definitions

This ASN.1 segment is the start of the NB-IoT RRC PDU definitions.

-- ASN1_NB_START

NBIOT-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
EXPORTS ;

IMPORTS [IE names to be filled in] FROM EUTRA-NBIOT-Common-RRC-Definitions;

-- ASN1_NB_STOP

–
BCCH-BCH-Message-NB
The BCCH-BCH-Message-NB class is the set of RRC messages that may be sent from the NB-IoT network to the UE via BCH on the BCCH logical channel.

-- ASN1_NB_START

BCCH-BCH-Message-NB ::= SEQUENCE {

message

BCCH-BCH-MessageType-NB-13
}

BCCH-BCH-MessageType-NB-r13 ::=

MasterInformationBlock-NB-r13
-- ASN1_NB_STOP
-- ASN1_NB_START
BCCH-DL-SCH-Message-NB ::= SEQUENCE {

message

BCCH-DL-SCH-MessageType-NB-r13
}

BCCH-DL-SCH-MessageType-NB-r13 ::= CHOICE {

c1

CHOICE {

systemInformation-NB-r13

SystemInformation-NB-r13,

systemInformationBlockType1-NB-r13

SystemInformationBlockType1-NB-r13

},

messageClassExtension
SEQUENCE {}

}

-- ASN1_NB_STOP
6.y
Common ASN.1 for E-UTRA and NB-IoT RRC messages
6.y.1
General message structure

–
EUTRA-NBIOT-Common-RRC-Definitions

This ASN.1 segment is the start of the E‑UTRA RRC PDU definitions.

-- ASN1_COMMON_START

EUTRA-NBIOT-Common-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
EXPORTS ALL;

-- ASN1_COMMON_STOP

6.y.2
Message definitions

–
RRCConnectionReestablishmentReject
The RRCConnectionReestablishmentReject message is used to indicate the rejection of an RRC connection reestablishment request.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: UE to E‑UTRAN

RRCConnectionReestablishmentReject message
-- ASN1_COMMON_START

RRCConnectionReestablishmentReject ::= SEQUENCE {

criticalExtensions

CHOICE {

rrcConnectionReestablishmentReject-r8

RRCConnectionReestablishmentReject-r8-IEs,

criticalExtensionsFuture

SEQUENCE {}

}

}

RRCConnectionReestablishmentReject-r8-IEs ::= SEQUENCE {

nonCriticalExtension

RRCConnectionReestablishmentReject-v8a0-IEs
OPTIONAL

}

RRCConnectionReestablishmentReject-v8a0-IEs ::= SEQUENCE {

lateNonCriticalExtension

OCTET STRING

OPTIONAL,

nonCriticalExtension

SEQUENCE {}

OPTIONAL

}

-- ASN1_COMMON_STOP

7/9

EUTRA-RRC-Definitions
NBIOT-RRC-Definitions
Single mode LTE
Single mode NB-IoT
Dual mode
Compiler
Compiler
Compiler
Compiler
NBIOT-RRC-Definitions
EUTRA-RRC-Definitions
EUTRA-RRC-Definitions
NBIOT-RRC-Definitions
Portion imported by NBIOT
IMPORT

EUTRA-RRC-Definitions
NBIOT-RRC-Definitions
EUTRA-NBIOT-Common-RRC-Definitions
Single mode LTE
Single mode NB-IoT
Dual mode
Compiler
Compiler
Compiler
Compiler
NBIOT-RRC-Definitions
EUTRA-RRC-Definitions
EUTRA-RRC-Definitions
NBIOT-RRC-Definitions
EUTRA-NBIOT-Common-RRC-Definitions
IMPORT
IMPORT
EUTRA-NBIOT-Common-RRC-Definitions
EUTRA-NBIOT-Common-RRC-Definitions

