
3GPP TSG-RAN WG2 Meeting #91bis
R2-154675
Malmö, Sweden, 5th – 9th October 2015
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	36.322
	CR
	CRNum
	rev
	-
	Current version:
	12.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	X
	Core Network
	

	

	Title:

	Extending RLC protocol header

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	R2

	
	

	Work item code:
	LTE_CA_enh_b5C-Core
	
	Date:
	2015-09-25

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Today, the RLC SN space is 10 bits and has thus 1024 values available. This means that when RLC SN reaches 511, the receiving window is full. Considering that one new RLC PDU can be generated for each of the 32 configurable serving cells and for each of the two transport blocks, the RLC SNs may run out within 1 HARQ RTT. Therefore, the current RLC SN dimensioning is clearly not appropriate for the new carrier aggregation scenario in which up to 32 component carriers can be configured.
Moreover, the RLC SO-, SOstart- and SOend-field need to be extended to mirror the new proposed 16-bit MAC L-field.

	
	

	Summary of change:
	Extend RLC SN-field. Extend RLC SO-, SOstart- and SOend-field.

	
	

	Consequences if not approved:
	It is not possible to fully exploit 32 configurable serving cells in each of the two transport blocks while avoiding RLC packet ambiguity due to RLC SN wrap-around.

	
	

	Clauses affected:
	6.2.1.4, 6.2.1.5, 6.2.1.6, 6.2.2.3, 6.2.2.7, 6.2.2.14, 6.2.2.16, 6.2.2.18, 6.2.2.19, 6.2.2.20, 7.1, 7.2

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

First modified section
6.2.1.4
AMD PDU

AMD PDU consists of a Data field and an AMD PDU header.

AMD PDU header consists of a fixed part (fields that are present for every AMD PDU) and an extension part (fields that are present for an AMD PDU when necessary). The fixed part of the AMD PDU header itself is byte aligned and consists of a D/C, a RF, a P, a FI, an E and a SN. The extension part of the AMD PDU header itself is byte aligned and consists of E(s) and LI(s).

An AM RLC entity is configured by RRC to use either a 10 bit SN or a 16 bit SN. An AMD PDU header consists of an extension part only when more than one Data field elements are present in the AMD PDU, in which case an E and a LI are present for every Data field element except the last. Furthermore, when an AMD PDU header consists of an odd number of LI(s) and the length of the LI field is 11 bits, four padding bits follow after the last LI.

[image: image1.emf]D/CRFPFIESN

SN

Data

...

Oct 3

Oct N

Oct 1

Oct 2

Figure 6.2.1.4-1: AMD PDU with 10 bit SN (length of LI field is 11 bits) (No LI)

[image: image2.emf]RRD/CRFPFIESNData...Oct 4Oct NOct 1Oct 2Oct 3SN

Figure 6.2.1.4-1a: AMD PDU with 16 bit SN (length of LI field is 11 bits) (No LI)

[image: image3.emf]LI

2

ELI

2

(if K>=3)

ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K-1

ELI

K-1

ELI

K-2

LI

K-2

...

Padding

ELI

K

LI

K

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if

K >= 3

Figure 6.2.1.4-2: AMD PDU with 10 bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image4.emf]SNRRLI2ELI2 (if K>=3)ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 4Oct 5Oct 6...LIK-1ELIK-1ELIK-2LIK-2...PaddingELIKLIKOct [2.5+1.5*K]Oct [2.5+1.5*K-1]Oct [2.5+1.5*K-2]Oct [2.5+1.5*K-3]Oct [2.5+1.5*K-4]Oct [2.5+1.5*K+1]Present if K >= 3Oct 3

Figure 6.2.1.4-2a: AMD PDU with 16 bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image5.emf]LI

2

ELI

2

ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K

ELI

K

ELI

K-1

LI

K-1

Oct [2+1.5*K]

...

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

Figure 6.2.1.4-3: AMD PDU with 10 bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image6.emf]SNRRLI2ELI2ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 3Oct 4Oct 5...LIKELIKELIK-1LIK-1Oct [2+1.5*K]...Oct [2+1.5*K-1]Oct [2+1.5*K-2]Oct [2+1.5*K+1]Oct 5

Figure 6.2.1.4-3a: AMD PDU with 16 bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image7.emf]ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

ELI

K

LI

K

Oct [2*K+3]

...

Oct [2*K+2]

Oct [2*K+1]

Figure 6.2.1.4-4: AMD PDU (length of LI field is 15 bits)

[image: image8.emf]SNRRELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 5...ELIKLIKOct [2*K+3]...Oct [2*K+2]Oct [2*K+1]Oct 3Oct 4

Figure 6.2.1.4-4a: AMD PDU with 16 bit SN (length of LI field is 15 bits)
Second modified section
6.2.1.5
AMD PDU segment

AMD PDU segment consists of a Data field and an AMD PDU segment header.

AMD PDU segment header consists of a fixed part (fields that are present for every AMD PDU segment) and an extension part (fields that are present for an AMD PDU segment when necessary). The fixed part of the AMD PDU segment header itself is byte aligned and consists of a D/C, a RF, a P, a FI, an E, a SN, a LSF and a SO. The extension part of the AMD PDU segment header itself is byte aligned and consists of E(s) and LI(s).

An AM RLC entity is configured by RRC to use either a 10 bit SN or a 16 bit SN. An AMD PDU segment header consists of an extension part only when more than one Data field elements are present in the AMD PDU segment, in which case an E and a LI are present for every Data field element except the last. Furthermore, when an AMD PDU segment header consists of an odd number of LI(s) and the length of the LI field is 11 bits, four padding bits follow after the last LI.

[image: image9.emf]SO

SOLSFOct 3

Oct 4

D/CRFPFIESN

SN

Data

...

Oct 5

Oct N

Oct 1

Oct 2

Figure 6.2.1.5-1: AMD PDU with 10 bit SN segment (No LI)

[image: image10.emf]RLSFSNSOSOOct 3Oct 4D/CRFPFIESNData...Oct 6Oct NOct 1Oct 2Oct 5

Figure 6.2.1.5-1a: AMD PDU with 16 bit SN segment with extended SO field (No LI)

[image: image11.emf]SO

SOLSFOct 3

Oct 4

LI

2

ELI

2

(if K>=3)

ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K-1

ELI

K-1

ELI

K-2

LI

K-2

...

Padding

ELI

K

LI

K

Oct [4.5+1.5*K]

Oct [4.5+1.5*K-1]

Oct [4.5+1.5*K-2]

Oct [4.5+1.5*K-3]

Oct [4.5+1.5*K-4]

Oct [4.5+1.5*K+1]

Present if

K >= 3

Figure 6.2.1.5-2: AMD PDU segment with 10 bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image12.emf]RLSFSOSOSNOct 3Oct 4LI2ELI2 (if K>=3)ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 5Oct 6Oct 7...LIK-1ELIK-1ELIK-2LIK-2...PaddingELIKLIKOct [4.5+1.5*K]Oct [4.5+1.5*K-1]Oct [4.5+1.5*K-2]Oct [4.5+1.5*K-3]Oct [4.5+1.5*K-4]Oct [4.5+1.5*K+1]Present if K >= 3Oct 8

Figure 6.2.1.5-2a: AMD PDU segment with 16 bit SN with extended SO field (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image13.emf]SO

SOLSFOct 3

Oct 4

LI

2

ELI

2

ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K

ELI

K

ELI

K-1

LI

K-1

Oct [4+1.5*K]

...

Oct [4+1.5*K-1]

Oct [4+1.5*K-2]

Oct [4+1.5*K+1]

Figure 6.2.1.5-3: AMD PDU segment with 10 bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image14.emf]RLSFSOSOSNOct 3Oct 4LI2ELI2ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2Oct 5Oct 6Oct 7...LIKELIKELIK-1LIK-1Oct [4+1.5*K]...Oct [4+1.5*K-1]Oct [4+1.5*K-2]Oct [4+1.5*K+1]Oct 8

Figure 6.2.1.5-3a: AMD PDU segment with 16 bit SN with extended SO field (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image15.emf]SO

SOLSFOct 3

Oct 4

ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

ELI

K

LI

K

Oct [2*K+5]

...

Oct [2*K+4]

Oct [2*K+3]

Figure 6.2.1.5-4: AMD PDU segment with 10 bit SN (length of LI field is 15 bits)

[image: image16.emf]RLSFSOSNOct 3ELI1LI1D/CRFPFIESNDataOct NOct 1Oct 2...ELIKLIKOct [2*K+5]...Oct [2*K+4]Oct [2*K+3]SOOct 6Oct 4Oct 5Oct 7

Figure 6.2.1.5-4a: AMD PDU segment with 16 bit SN with extended SO field (length of LI field is 15 bits)
Third modified section
6.2.1.6
STATUS PDU

STATUS PDU consists of a STATUS PDU payload and a RLC control PDU header.

RLC control PDU header consists of a D/C and a CPT field.

The STATUS PDU payload starts from the first bit following the RLC control PDU header, and it consists of one ACK_SN and one E1, zero or more sets of a NACK_SN, an E1 and an E2, and possibly a set of a SOstart and a SOend for each NACK_SN. When necessary one to seven padding bits are included in the end of the STATUS PDU to achieve octet alignment.

[image: image17.emf]NACK_SN

D/CCPT

E1

ACK_SN

ACK_SN

Oct 1

Oct 2

NACK_SN

E1E2NACK_SN

NACK_SN

SOstart

SOstart

SOend

SOend

E1E2

SOend

...

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

Figure 6.2.1.6-1: STATUS PDU with 10 bit SN

[image: image18.emf]SOendACK_SNNACK_SNNACK_SNNACK_SND/CCPTE1ACK_SNACK_SNOct 1Oct 2NACK_SNE1E2NACK_SNNACK_SNSOstartSOendSOstartE1E2...Oct 3Oct 4Oct 5Oct 7Oct 8Oct 9Oct 10Oct 6Oct 11Oct 12

Figure 6.2.1.6-2: STATUS PDU with 16 bit SN and extended SOstart and SOend fields
Fourth modified section
6.2.2.3
Sequence Number (SN) field

Length: 10 bits or 16 bits (configurable) for AMD PDU and AMD PDU segments. 5 bits or 10 bits (configurable) for UMD PDU.

The SN field indicates the sequence number of the corresponding UMD or AMD PDU. For an AMD PDU segment, the SN field indicates the sequence number of the original AMD PDU from which the AMD PDU segment was constructed from. The sequence number is incremented by one for every UMD or AMD PDU.

Fifth modified section
6.2.2.7
Segment Offset (SO) field

Length: 15 bits or 16 bits (configurable).
The SO field indicates the position of the AMD PDU segment in bytes within the original AMD PDU. Specifically, the SO field indicates the position within the Data field of the original AMD PDU to which the first byte of the Data field of the AMD PDU segment corresponds to. The first byte in the Data field of the original AMD PDU is referred by the SO field value "000000000000000", or "0000000000000000", i.e., numbering starts at zero.

Sixth modified section
6.2.2.14
Acknowledgement SN (ACK_SN) field

Length: 10 bits or 16 bits (configurable)..

The ACK_SN field indicates the SN of the next not received RLC Data PDU which is not reported as missing in the STATUS PDU. When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all AMD PDUs up to but not including the AMD PDU with SN = ACK_SN have been received by its peer AM RLC entity, excluding those AMD PDUs indicated in the STATUS PDU with NACK_SN and portions of AMD PDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend.

Seventh modified section
6.2.2.16
Negative Acknowledgement SN (NACK_SN) field

Length: 10 bits or 16 bits (configurable)..

The NACK_SN field indicates the SN of the AMD PDU (or portions of it) that has been detected as lost at the receiving side of the AM RLC entity.

Eight modified section
6.2.2.18
SO start (SOstart) field

Length: 15 bits or 16 bits (configurable).
The SOstart field (together with the SOend field) indicates the portion of the AMD PDU with SN = NACK_SN (the NACK_SN for which the SOstart is related to) that has been detected as lost at the receiving side of the AM RLC entity. Specifically, the SOstart field indicates the position of the first byte of the portion of the AMD PDU in bytes within the Data field of the AMD PDU. The first byte in the Data field of the original AMD PDU is referred by the SOstart field value "000000000000000", or "0000000000000000", i.e., numbering starts at zero.
Ninth modified section
6.2.2.19
SO end (SOend) field

Length: 15 bits or 16 bits (configurable).
The SOend field (together with the SOstart field) indicates the portion of the AMD PDU with SN = NACK_SN (the NACK_SN for which the SOend is related to) that has been detected as lost at the receiving side of the AM RLC entity. Specifically, the SOend field indicates the position of the last byte of the portion of the AMD PDU in bytes within the Data field of the AMD PDU. The first byte in the Data field of the original AMD PDU is referred by the SOend field value "000000000000000", or or "0000000000000000", i.e., numbering starts at zero. The special SOend value "111111111111111" or or "1111111111111111" is used to indicate that the missing portion of the AMD PDU includes all bytes to the last byte of the AMD PDU.
6.2.2.20
R field
Reserved bit
Tenth modified section
7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables and all counters are non-negative integers.

All state variables related to AM data transfer can take values from 0 to [2[sn-FieldLength] – 1]. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 2[sn-FieldLength]).

All state variables related to UM data transfer can take values from 0 to [2[sn-FieldLength] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[sn-FieldLength]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to to [2[sn-FieldLength] – 1].
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used.

VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 2[sn-FieldLength] <= [SN – VR(R)] modulo 2[sn-FieldLength] < [VR(MR) – VR(R)] modulo 2[sn-FieldLength]).

VR(UH) – UM_Window_Size shall be assumed as the modulus base at the receiving side of an UM RLC entity. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. (VR(UH) – UM_Window_Size) <= SN < VR(UH) is evaluated as [(VR(UH) – UM_Window_Size) – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength] <= [SN – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength] < [VR(UH) – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength]).

The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

d) POLL_SN – Poll send state variable

This state variable holds the value of VT(S)-1 upon the most recent transmission of a RLC data PDU with the poll bit set to “1”. It is initially set to 0.

The transmitting side of each AM RLC entity shall maintain the following counters:

a) PDU_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of AMD PDUs sent since the most recent poll bit was transmitted.

b) BYTE_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of data bytes sent since the most recent poll bit was transmitted.

c) RETX_COUNT – Counter

This counter counts the number of retransmissions of an AMD PDU (see subclause 5.2.1). There is one RETX_COUNT counter per PDU that needs to be retransmitted.

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(MR) – Maximum acceptable receive state variable

This state variable equals VR(R) + AM_Window_Size, and it holds the value of the SN of the first AMD PDU that is beyond the receiving window and serves as the higher edge of the receiving window.

c) VR(X) – t-Reordering state variable

This state variable holds the value of the SN following the SN of the RLC data PDU which triggered t-Reordering.

d) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the highest possible value of the SN which can be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.

e) VR(H) – Highest received state variable

This state variable holds the value of the SN following the SN of the RLC data PDU with the highest SN among received RLC data PDUs. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering. It is initially set to 0. For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
b) VR(UX) – UM t-Reordering state variable

This state variable holds the value of the SN following the SN of the UMD PDU which triggered t-Reordering.

c) VR(UH) – UM highest received state variable

This state variable holds the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs, and it serves as the higher edge of the reordering window. It is initially set to 0. For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
Eleventh modified section
7.2
Constants

a) AM_Window_Size

This constant is used by both the transmitting side and the receiving side of each AM RLC entity to calculate VT(MS) from VT(A), and VR(MR) from VR(R). AM_Window_Size = 512 when a 10 bit SN is configured and AM_Window_Size = 32768 when a 16 bit SN is configured.

b) UM_Window_Size

This constant is used by the receiving UM RLC entity to define SNs of those UMD PDUs that can be received without causing an advancement of the receiving window. UM_Window_Size = 16 when a 5 bit SN is configured, UM_Window_Size = 512 when a 10 bit SN is configured and UM_Window_Size = 0 when the receiving UM RLC entity is configured for MCCH, MTCH or STCH.

No more modified sections

R
R
D/C
RF
P
FI
E
SN

Data
...
Oct 4
Oct N
Oct 1
Oct 2

Oct 3
SN

R
LSF
SN
SO
SO
Oct 3
Oct 4
D/C
RF
P
FI
E
SN

Data
...
Oct 6
Oct N
Oct 1
Oct 2

Oct 5

R
LSF
SO
SO
SN
Oct 3
Oct 4
LI2
E
LI2
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2
Oct 5
Oct 6
Oct 7

...
LIK
E
LIK
E
LIK-1
LIK-1
Oct [4+1.5*K]
...
Oct [4+1.5*K-1]
Oct [4+1.5*K-2]
Oct [4+1.5*K+1]
Oct 8

R
LSF
SO
SN
Oct 3
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2

...
E
LIK
LIK
Oct [2*K+5]
...
Oct [2*K+4]
Oct [2*K+3]
SO
Oct 6
Oct 4
Oct 5
Oct 7

SOend

ACK_SN
NACK_SN
NACK_SN
NACK_SN
D/C
CPT
E1
ACK_SN
ACK_SN
Oct 1
Oct 2

NACK_SN
E1
E2
NACK_SN
NACK_SN
SOstart
SOend
SOstart

E1
E2

...

Oct 3
Oct 4
Oct 5
Oct 7
Oct 8
Oct 9
Oct 10
Oct 6
Oct 11
Oct 12

R
LSF
SO
SO
SN
Oct 3
Oct 4
LI2
E
LI2 (if K>=3)
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2
Oct 5
Oct 6
Oct 7

...
LIK-1
E
LIK-1
E
LIK-2
LIK-2
...
Padding
E
LIK
LIK
Oct [4.5+1.5*K]
Oct [4.5+1.5*K-1]
Oct [4.5+1.5*K-2]
Oct [4.5+1.5*K-3]
Oct [4.5+1.5*K-4]
Oct [4.5+1.5*K+1]
Present if K >= 3
Oct 8

SN
R
R
LI2
E
LI2
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2
Oct 3
Oct 4
Oct 5

...
LIK
E
LIK
E
LIK-1
LIK-1
Oct [2+1.5*K]
...
Oct [2+1.5*K-1]
Oct [2+1.5*K-2]
Oct [2+1.5*K+1]
Oct 5

SN
R
R
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2
Oct 5

...
E
LIK
LIK
Oct [2*K+3]
...
Oct [2*K+2]
Oct [2*K+1]
Oct 3
Oct 4

SN
R
R
LI2
E
LI2 (if K>=3)
E
LI1
LI1
D/C
RF
P
FI
E
SN

Data
Oct N
Oct 1
Oct 2
Oct 4
Oct 5
Oct 6

...
LIK-1
E
LIK-1
E
LIK-2
LIK-2
...
Padding
E
LIK
LIK
Oct [2.5+1.5*K]
Oct [2.5+1.5*K-1]
Oct [2.5+1.5*K-2]
Oct [2.5+1.5*K-3]
Oct [2.5+1.5*K-4]
Oct [2.5+1.5*K+1]
Present if K >= 3
Oct 3

_1264946209.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 5

Oct N

Oct 1

Oct 2

SO�

SO�

LSF�

Oct 3

Oct 4

_1264946501.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [4+1.5*K-1]

Oct [4+1.5*K-2]

Oct [4+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [4+1.5*K]

SO�

SO�

LSF�

Oct 3

Oct 4

_1462107656.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+2]

Oct [2*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+3]

_1465721603.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+4]

Oct [2*K+3]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

E�

LIK�

LIK�

Oct [2*K+5]

SO�

SO�

LSF�

Oct 3

Oct 4

_1264946239.vsd
�

テキスト�

SO�

SO�

LSF�

Oct 3

Oct 4

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [4.5+1.5*K]

Oct [4.5+1.5*K-1]

Oct [4.5+1.5*K-2]

Oct [4.5+1.5*K-3]

Oct [4.5+1.5*K-4]

Oct [4.5+1.5*K+1]

Present if K >= 3�

_1264946031.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if K >= 3�

_1264946075.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [2+1.5*K]

_1264945963.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 3

Oct N

Oct 1

Oct 2

_1262707143.vsd
�

D/C�

NACK_SN�

CPT�

E1�

ACK_SN�

ACK_SN�

�

E1

E1

E2

Oct 1

Oct 2

E2

NACK_SN

NACK_SN

SOend

SOstart

SOstart

SOend

SOend

�

...

NACK_SN

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

