3GPP TSG-RAN WG2 Meeting #91bis
R2-154075
Malmo, Sweden, 5 – 9 October 2015
Agenda item:

11.2.1
Source:
Nokia Networks

Title:
Sync error correction for extended DRX operation
1
Introduction
In RAN#68, a WI on Small Data Transmission Enhancements for UMTS was approved (UTRA_SDATA_POWSAV) [1]. One of its objectives is to consider DRX enhancements as potential battery life saving solutions:
	· DRX enhancements in Idle mode: (RAN2, RAN3, RAN4)

· DRX extensions that are applicable for both beyond and within the SFN limit of 40.96 sec
In the RAN2#91 meeting, the following working agreement was reached:

Working agreement: we will standardize the timer based solution, as endorsed by SA2, for Idle mode eDRX in UMTS, for both DRX cycles below and above 40.96 sec. The solution…

The timer based solution has been described in detail by [1]. In this paper we discuss a potential solution for the sync error problem which may happen during the transition of the UE to RRC_IDLE and enabling extended DRX with the timer based approach.
2
Description of the sync error problem
During the discussions on Idle mode extended DRX operation it is understood that the UE will start a timer (TeDRX) after which it enters the deep sleep mode to enable lower battery consumption. While it is clear that this timer has to be started, it was not clear when exactly the UE and CN shall start this timer. However this is answered in [2]:
“CN and UE start the extended TeDRX timer at transmission and reception, respectively, of the Attach Accept or TAU/RAU Accept message where the relevant extended Idle mode DRX parameters are provided. In other words, Tref corresponds in the CN to the instant when TAU/RAU Accept message is sent and in the UE to the instant when the respective Accept message is received.”

[image: image1.emf]TeDRXTN=TRef + N*TeDRXTN+1=TRef+(N +1)*TeDRXTPTWTN+2=TRef+(N +2)*TeDRXTDRXTDRXTeDRXTPTWTeDRXTPTWTDRXTDRXTDRXTDRXTN+3=TRef+(N +3)*TeDRX

Figure 1: Showing the relationship between the Tref and TeDRX

SA2 has technically agreed 3 sets of CRs one for each solution; clock based, event based and hyper SFN based. Based on the information from RAN on the preferred solution, SA2 will approve the respective CR package for that solution.
[image: image2.jpg]
Figure 2: Example to demonstrate how the sync error may be visualized (Source: Ericsson)
Figure 1 explains the basic problem, i.e. due to air-interface re-transmissions, the UE and SGSN start the TeDRX timer at a different time (i.e. the UE starts the timer significantly later than the SGSN), if the Tref is considered to be started based on the recommendation from [2], there is an impact on the RAN. In Figure 2, it is clearly seen that the NAS reply reception at the UE may be delayed and this delay is potentially of the order of a few seconds.
In a worst case scenario we could have a large air-interface delay in the order of multiple seconds. Under normal good conditions the air-interface delay should not be that large because small data devices could be in bad coverage conditions. The NAS reply (Routing Area Update accept, Attach accept) is sent in Downlink Direct Transfer on SRB2. For the control signaling over SRB2 there are both L2 and L3 timers supervising/controlling the radio connection. However the L2 timers are expected to expire before the L3 timers kick-in. There are L2 timers in both UE and NW controlling the L2 retransmissions until an RLC Unrecoverable Error is detected. In UE for uplink traffic and in NW for downlink traffic. The L2 timer in the NW is set according to the used Timer_Poll and Max_DAT, i.e. timeout = Timer_Poll x Max_DAT. Depending on the parametrization of these values, the potential delay could be even large as 20 seconds.

To solve the problem, the value of the Sync error must be computable and a suitable compensation must be made during for the duration of the TeDRX.
3
Possible solutions to the sync error problem
Solution 1: UE informs the network when it has started the TeDRX
One of the possible solutions is that the UE starts the TeDRX timer when it is going to enter RRC_IDLE mode and informs the network about it. However there are a few aspects about this as well which make the process non-deterministic:
· The network cannot expect always that the RRC Connection Release Complete is received as quickly as possible due to the same reasoning in Figure 2 when using DCCH.
· The exact time at which the UE enters RRC_IDLE cannot be exactly determined by the network if the network uses a CCCH to terminate the RRC connection. Usually the network repeats the RRC Connection Release multiple times in anticipation that the UE will receive it at least once. The UE transitions to RRC_IDLE on receipt of the message after some processing delay which is internal to its implementation. For CCCH based RRC connection release there is no release complete from the UE.
· The RRC Connection Release Complete may never reach the network but the UE has already transitioned to RRC_IDLE.
Hence, solution 1 is quite unreliable.

Solution 2: Network informs the UE a timestamp which is used by the UE to compute the sync error

In this solution the network informs in the Attach Accept or equivalent downlink NAS message a timestamp which indicates to the UE when the network dispatched it. Once the UE receives it the UE computes the sync error and may appropriately correct the error. The solution impacts the RRC protocol.
This solution has impacts on the RNC and the UE and in this case tends towards the hyper SFN approach increasing the complexity of the idle mode extended DRX solution. One additional aspect of this solution is the impact to the RRC protocol:

· ASN.1 impact to add the timestamp in the RRC Downlink Direct Transfer message

· UE processing involving reading the current SFN and calculating the offset
· Adjusting the offset by also determining if there has been a wraparound of the SFN

As a side comment, which is also in itself a bigger handicap, is relying on the timestamp based on the SFN might be that delays longer than 41 seconds cannot be safely adjusted anymore again because of the SFN can only resolve up to 41 seconds.

Solution 3: UE computes sync error by adjusting the start of the TeDRX linked to an uplink NAS message transfer (preferably the last one in any NAS transaction)
Yet, another possible solution is to ensure that the UE always starts the TeDRX timer at the last uplink NAS PDU transmitted. By doing so the UE could measure the timeout delay based on the reception of the RLC ACK and then use this to compensate the start of the TeDRX. From [3], the possible NAS procedures in this case and the corresponding NAS messages when the UE has to do this are:

- Attach Complete (this is an optional message only used under certain conditions by the UE e.g. for P-TMSI reallocation case)
- Routing Area Update Complete (this is again optional like the Attach Complete)
- Service Accept (there is no corresponding complete message from the UE to the network)

- Activate PDP Context Accept (there is no corresponding complete message from the UE to the network)
- Activate Secondary PDP Context Accept (there is no corresponding complete message from the UE to the network)
Unfortunately even this solution is fraught with diversity, reason being that not all the NAS transactions need mandatory complete messages. So one way forward is to use the SA2 proposal as a guideline and use the Attach procedure as a reference and make the UE send an Attach Complete/RAU complete compulsorily when TeDRX values are configured. Yet once again we have additional implementation burden.
Solution 4: RNC computes sync error by calculating the time offset and informs to the core network during the NAS attach procedure

A way forward to make the offset calculation network centric. The RNC starts a local timer when the Attach/RAU Accept is dispatched to the UE. When the RLC ACK for this transmission arrives the RNC can stop the local timer and send the offset to the core network in the last transaction in which the RRC connection release would be triggered (e.g. the Iu Release). The robustness of the delivery of any AM message is guaranteed at the RLC layer. For e.g. a lost RLC ACK is tracked by the poll mechanism and further backed up by successive retransmissions of the message. This is existing functionality which should be reused.
The only flip side of this solution is that there is an impact on the Iu interface. However the positive side is that the UE is spared of any new implementation by choosing this solution. Additionally it is worth noting that the RNC could potentially add any other delays from transport and node processing to keep the skew between the core network and UE as short as possible.

4
Concluding on the solutions to the sync error problem

In this contribution, 4 potential solutions have been described to fix the sync error determination. Based on the analysis Solution 2 and 4 seems to be a potential way forward because the UE or RNC could determine the maximum delay in delivery of the NAS message and calculate the sync error.
However considering the robustness of the Solution 4 compared to Solution 2, we propose that Solution 4 be the recommended way forward.
Proposal 1: Agree that the RNC computes sync error by calculating the sync error in delivering the NAS accept and informs to the core network using an extension in existing Iu message.
Proposal 2: Send an LS to RAN3 indicating RAN2 preferred solution in dealing with the sync error.

Proposal 3: Send an LS to SA2 indicating preferred solution in dealing with the sync error.
References

[1] R2-153540: eDRX solution in Idle mode
Ericsson
[2] S2-152617: Introducing Extended Idle mode DRX (CR introducing the feature)
_1494336607.vsd
TeDRX

TN=TRef + N*TeDRX

TN+1=TRef+(N +1)*TeDRX

TPTW

TN+2=TRef+(N +2)*TeDRX

TDRX

TDRX

TeDRX

TPTW

TeDRX

TPTW

TDRX

TDRX

TDRX

TDRX

TN+3=TRef+(N +3)*TeDRX

