
3GPP TSG-RAN WG2 Meeting #91
R2-153364
Beijing, China, August 24-28, 2015
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	36.322
	CR
	0110
	rev
	-
	Current version:
	12.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	X
	Core Network
	

	

	Title:

	Extention of SN and SO field in RLC PDU

	
	

	Source to WG:
	Huawei, HiSilicon

	Source to TSG:
	R2

	
	

	Work item code:
	LTE_CA_enh_b5C-Core
	
	Date:
	2015-08-23

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	The current 10bit RLC SN cannot meet the requirement of 32 CC. This may limit the peak data rate.
In addition, the SO should be identical with L field in MAC PDU, so it should be extended if L field in MAC PDU is extended.

	
	

	Summary of change:
	18bits RLC SN and 16 bits SO are introduced.

	
	

	Consequences if not approved:
	The peak data rate may be limited.

	
	

	Clauses affected:
	6.2.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

6.2.1
Formats

6.2.1.1
General

RLC PDU is a bit string. In the figures in sub clause 6.2.1.2 to 6.2.1.6, bit strings are represented by tables in which the first and most significant bit is the left most bit of the first line of the table, the last and least significant bit is the rightmost bit of the last line of the table, and more generally the bit string is to be read from left to right and then in the reading order of the lines.

RLC SDUs are bit strings that are byte aligned (i.e. multiple of 8 bits) in length. An RLC SDU is included into an RLC PDU from first bit onward.

6.2.1.2
TMD PDU

TMD PDU consists only of a Data field and does not consist of any RLC headers.

[image: image1.emf]Oct 1

Oct N

Data

...

Figure 6.2.1.2-1: TMD PDU
6.2.1.3
UMD PDU

UMD PDU consists of a Data field and an UMD PDU header.

UMD PDU header consists of a fixed part (fields that are present for every UMD PDU) and an extension part (fields that are present for an UMD PDU when necessary). The fixed part of the UMD PDU header itself is byte aligned and consists of a FI, an E and a SN. The extension part of the UMD PDU header itself is byte aligned and consists of E(s) and LI(s).

An UM RLC entity is configured by RRC to use either a 5 bit SN or a 10 bit SN. When the 5 bit SN is configured, the length of the fixed part of the UMD PDU header is one byte. When the 10 bit SN is configured, the fixed part of the UMD PDU header is identical to the fixed part of the AMD PDU header, except for D/C, RF and P fields all being replaced with R1 fields. The extension part of the UMD PDU header is identical to the extension part of the AMD PDU header (regardless of the configured SN size).

An UMD PDU header consists of an extension part only when more than one Data field elements are present in the UMD PDU, in which case an E and a LI are present for every Data field element except the last. Furthermore, when an UMD PDU header consists of an odd number of LI(s), four padding bits follow after the last LI.

[image: image2.emf]E FI SN

Data

...

Oct N

Oct 1

Oct 2

Figure 6.2.1.3-1: UMD PDU with 5 bit SN (No LI)

[image: image3.emf]R1 R1 R1 FI E SN

SN

Data

...

Oct 3

Oct N

Oct 1

Oct 2

Figure 6.2.1.3-2: UMD PDU with 10 bit SN (No LI)

[image: image4.emf]LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

E FI SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K-5]

Oct [2.5+1.5*K]

Present

if K >= 3

Figure 6.2.1.3-3: UMD PDU with 5 bit SN (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image5.emf]LI

2

E LI

2

E LI

1

LI

1

E FI SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [2+1.5*K-1]

...

Oct [2+1.5*K-2]

Oct [2+1.5*K-3]

Oct [2+1.5*K]

Figure 6.2.1.3-4: UMD PDU with 5 bit SN (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image6.emf]LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

R1 R1 R1 FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present

if K >= 3

Figure 6.2.1.3-5: UMD PDU with 10 bit SN (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image7.emf]LI

2

E LI

2

E LI

1

LI

1

R1 R1 R1 FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [2+1.5*K]

...

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

Figure 6.2.1.3-6: UMD PDU with 10 bit SN (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image8.emf]R1 R1 R1 FI E SN

SN

Data

...

Oct 3

Oct N

Oct 1

Oct 2

SN

Oct 4

Figure 6.2.1.3-7: UMD PDU with 18 bit SN (No LI)

[image: image9.emf]LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

R1 R1 R1 FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [3.5+1.5*K]

Oct [3.5+1.5*K-1]

Oct [3.5+1.5*K-2]

Oct [3.5+1.5*K-3]

Oct [3.5+1.5*K-4]

Oct [3.5+1.5*K+1]

Present if

K >= 3

SN

Oct 6

Figure 6.2.1.3-8: UMD PDU with 18 bit SN (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image10.emf]LI

2

E LI

2

E LI

1

LI

1

R1 R1 R1 FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [3+1.5*K]

...

Oct [3+1.5*K-1]

Oct [3+1.5*K-2]

Oct [3+1.5*K+1]

SN

Oct 6

Figure 6.2.1.3-9: UMD PDU with 18 bit SN (Even number of LIs, i.e. K = 2, 4, 6, …)
6.2.1.4
AMD PDU
AMD PDU consists of a Data field and an AMD PDU header.

AMD PDU header consists of a fixed part (fields that are present for every AMD PDU) and an extension part (fields that are present for an AMD PDU when necessary). The fixed part of the AMD PDU header itself is byte aligned and consists of a D/C, a RF, a P, a FI, an E and a SN. The extension part of the AMD PDU header itself is byte aligned and consists of E(s) and LI(s).

An AMD PDU header consists of an extension part only when more than one Data field elements are present in the AMD PDU, in which case an E and a LI are present for every Data field element except the last. Furthermore, when an AMD PDU header consists of an odd number of LI(s) and the length of the LI field is 11 bits, four padding bits follow after the last LI.

[image: image11.emf]D/C RF P FI E SN

SN

Data

...

Oct 3

Oct N

Oct 1

Oct 2

Figure 6.2.1.4-1: AMD PDU with 10bit SN (length of LI field is 11 bits) (No LI)

[image: image12.emf]LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if

K >= 3

Figure 6.2.1.4-2: AMD PDU with 10bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image13.emf]LI

2

E LI

2

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [2+1.5*K]

...

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

Figure 6.2.1.4-3: AMD PDU with 10bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image14.emf]E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E LI

K

LI

K

Oct [2*K+3]

...

Oct [2*K+2]

Oct [2*K+1]

Figure 6.2.1.4-4: AMD PDU with 10bit SN (length of LI field is 15 bits)

[image: image15.emf]D/C RF P FI E SN

SN

Data

...

Oct 3

Oct N

Oct 1

Oct 2

SN

Oct 4

Figure 6.2.1.4-5: AMD PDU with 18bit SN (length of LI field is 11 bits) (No LI)

[image: image16.emf]LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [3.5+1.5*K]

Oct [3.5+1.5*K-1]

Oct [3.5+1.5*K-2]

Oct [3.5+1.5*K-3]

Oct [3.5+1.5*K-4]

Oct [3.5+1.5*K+1]

Present if

K >= 3

SN

Oct 6

Figure 6.2.1.4-6: AMD PDU with 18bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image17.emf]LI

2

E LI

2

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [3+1.5*K]

...

Oct [3+1.5*K-1]

Oct [3+1.5*K-2]

Oct [3+1.5*K+1]

SN

Oct 6

Figure 6.2.1.4-7: AMD PDU with 18bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image18.emf]E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E LI

K

LI

K

Oct [2*K+4]

...

Oct [2*K+3]

Oct [2*K+2]

SN

Oct 5

Figure 6.2.1.4-8: AMD PDU with 18bit SN (length of LI field is 15 bits)
6.2.1.5
AMD PDU segment

AMD PDU segment consists of a Data field and an AMD PDU segment header.

AMD PDU segment header consists of a fixed part (fields that are present for every AMD PDU segment) and an extension part (fields that are present for an AMD PDU segment when necessary). The fixed part of the AMD PDU segment header itself is byte aligned and consists of a D/C, a RF, a P, a FI, an E, a SN, a LSF and a SO. The extension part of the AMD PDU segment header itself is byte aligned and consists of E(s) and LI(s).

An AMD PDU segment header consists of an extension part only when more than one Data field elements are present in the AMD PDU segment, in which case an E and a LI are present for every Data field element except the last. Furthermore, when an AMD PDU segment header consists of an odd number of LI(s) and the length of the LI field is 11 bits, four padding bits follow after the last LI.

[image: image19.emf]SO

SO LSF Oct 3

Oct 4

D/C RF P FI E SN

SN

Data

...

Oct 5

Oct N

Oct 1

Oct 2

Figure 6.2.1.5-1: AMD PDU segment with 10bit SN (No LI)

[image: image20.emf]SO

SO LSF Oct 3

Oct 4

LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [4.5+1.5*K]

Oct [4.5+1.5*K-1]

Oct [4.5+1.5*K-2]

Oct [4.5+1.5*K-3]

Oct [4.5+1.5*K-4]

Oct [4.5+1.5*K+1]

Present if

K >= 3

Figure 6.2.1.5-2: AMD PDU segment with 10bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image21.emf]SO

SO LSF Oct 3

Oct 4

LI

2

E LI

2

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [4+1.5*K]

...

Oct [4+1.5*K-1]

Oct [4+1.5*K-2]

Oct [4+1.5*K+1]

Figure 6.2.1.5-3: AMD PDU segment with 10bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image22.emf]SO

SO LSF Oct 3

Oct 4

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

E LI

K

LI

K

Oct [2*K+5]

...

Oct [2*K+4]

Oct [2*K+3]

Figure 6.2.1.5-4: AMD PDU segment with 10bit SN (length of LI field is 15 bits)

[image: image23.emf]SO

SO LSF

Oct 3

Oct 4

D/C RF P FI E SN

SN

Data

...

Oct 5

Oct N

Oct 1

Oct 2

SN

SO Oct 6 Padding

Figure 6.2.1.5-5: AMD PDU segment with 18bit SN (No LI)

[image: image24.emf]SO

SO LSF

Oct 3

Oct 4

LI

2

E LI

2

(if K>=3)

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K-1

E LI

K-1

E LI

K-2

LI

K-2

...

Padding

E LI

K

LI

K

Oct [6.5+1.5*K]

Oct [6.5+1.5*K-1]

Oct [6.5+1.5*K-2]

Oct [6.5+1.5*K-3]

Oct [6.5+1.5*K-4]

Oct [6.5+1.5*K+1]

Present if

K >= 3

SO Padding

SN

Oct 8

Oct 9

Figure 6.2.1.5-6: AMD PDU segment with 18bit SN (length of LI field is 11 bits) (Odd number of LIs, i.e. K = 1, 3, 5, …)

[image: image25.emf]SO

SO LSF

Oct 3

Oct 4

LI

2

E LI

2

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LI

K

E LI

K

E LI

K-1

LI

K-1

Oct [6+1.5*K]

...

Oct [6+1.5*K-1]

Oct [6+1.5*K-2]

Oct [6+1.5*K+1]

SN

SO Padding

Oct 8

Oct 9

Figure 6.2.1.5-7: AMD PDU segment with 18bit SN (length of LI field is 11 bits) (Even number of LIs, i.e. K = 2, 4, 6, …)

[image: image26.emf]SO

SO LSF

Oct 3

Oct 4

E LI

1

LI

1

D/C RF P FI E SN

SN

Data

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

E LI

K

LI

K

Oct [2*K+7]

...

Oct [2*K+6]

Oct [2*K+5]

Padding SO

SN

Oct 7

Oct 8

Figure 6.2.1.5-8: AMD PDU segment with 18bit SN (length of LI field is 15 bits)
6.2.1.6
STATUS PDU

STATUS PDU consists of a STATUS PDU payload and a RLC control PDU header.

RLC control PDU header consists of a D/C and a CPT field.

The STATUS PDU payload starts from the first bit following the RLC control PDU header, and it consists of one ACK_SN and one E1, zero or more sets of a NACK_SN, an E1 and an E2, and possibly a set of a SOstart and a SOend for each NACK_SN. When necessary one to seven padding bits are included in the end of the STATUS PDU to achieve octet alignment.

[image: image27.emf]NACK_SN

D/C CPT

E1

ACK_SN

ACK_SN

Oct 1

Oct 2

NACK_SN

E1 E2 NACK_SN

NACK_SN

SOstart

SOstart

SOend

SOend

E1 E2

SOend

...

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

Figure 6.2.1.6-1: STATUS PDU with 10bit SN

[image: image28.emf]D/C CPT ACK_SN

ACK_SN

Oct 1

Oct 2

NACK_SN

NACK_SN

NACK_SN

SOstart

SOstart

...

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

ACK_SN E1

NACK_SN

E1

NACK_SN

E1 E2

SOend

SOend

Oct 10

Oct 11

Oct 12

Oct 13

Oct 14

E2

NACK_SN

Figure 6.2.1.6-2: STATUS PDU with 18bit SN
6.2.2
Parameters

6.2.2.1
General

In the definition of each field in sub clauses 6.2.2.2 to 6.2.2.19, the bits in the parameters are represented in which the first and most significant bit is the left most bit and the last and least significant bit is the rightmost bit. Unless mentioned otherwise, integers are encoded in standard binary encoding for unsigned integers.

6.2.2.2
Data field

Data field elements are mapped to the Data field in the order which they arrive to the RLC entity at the transmitter.

For TMD PDU, UMD PDU and AMD PDU:

-
The granularity of the Data field size is one byte;

-
The maximum Data field size is the maximum TB size minus the sum of minimum MAC PDU header size and minimum RLC PDU header size.

For TMD PDU:

-
Only one RLC SDU can be mapped to the Data field of one TMD PDU.

For UMD PDU, AMD PDU and AMD PDU segment:

-
Either of the following can be mapped to the Data field of one UMD PDU, AMD PDU or AMD PDU segment:

-
Zero RLC SDU segments and one or more RLC SDUs;

-
One or two RLC SDU segments and zero or more RLC SDUs;

-
RLC SDU segments are either mapped to the beginning or the end of the Data field;

-
A RLC SDU or RLC SDU segment larger than 2047 octets for 11 bits LI can only be mapped to the end of the Data field;

-
When there are two RLC SDU segments, they belong to different RLC SDUs.

6.2.2.3
Sequence Number (SN) field

Length: 10 bits or 18 bits (18 bits is configurable) for AMD PDU and AMD PDU segments. 5 bits,10 bits or 18 bits (configurable) for UMD PDU.

The SN field indicates the sequence number of the corresponding UMD or AMD PDU. For an AMD PDU segment, the SN field indicates the sequence number of the original AMD PDU from which the AMD PDU segment was constructed from. The sequence number is incremented by one for every UMD or AMD PDU.

6.2.2.4
Extension bit (E) field

Length: 1 bit.

The E field indicates whether Data field follows or a set of E field and LI field follows. The interpretation of the E field is provided in Table 6.2.2.4-1 and Table 6.2.2.4-2.

Table 6.2.2.4-1: E field interpretation (for E field in the fixed part of the header)

	Value
	Description

	0
	Data field follows from the octet following the fixed part of the header

	1
	A set of E field and LI field follows from the octet following the fixed part of the header

Table 6.2.2.4-2: E field interpretation (for E field in the extension part of the header)

	Value
	Description

	0
	Data field follows from the octet following the LI field following this E field

	1
	A set of E field and LI field follows from the bit following the LI field following this E field

6.2.2.5
Length Indicator (LI) field

Length: 11 bits for RLC UM, 11 bits or 15 bits for RLC AM. The length of the LI field for RLC AM is configured by upper layers.

The LI field indicates the length in bytes of the corresponding Data field element present in the RLC data PDU delivered/received by an UM or an AM RLC entity. The first LI present in the RLC data PDU header corresponds to the first Data field element present in the Data field of the RLC data PDU, the second LI present in the RLC data PDU header corresponds to the second Data field element present in the Data field of the RLC data PDU, and so on. The value 0 is reserved.

6.2.2.6
Framing Info (FI) field

Length: 2 bits.

The FI field indicates whether a RLC SDU is segmented at the beginning and/or at the end of the Data field. Specifically, the FI field indicates whether the first byte of the Data field corresponds to the first byte of a RLC SDU, and whether the last byte of the Data field corresponds to the last byte of a RLC SDU. The interpretation of the FI field is provided in Table 6.2.2.6-1.

Table 6.2.2.6-1: FI field interpretation

	Value
	Description

	00
	First byte of the Data field corresponds to the first byte of a RLC SDU.

Last byte of the Data field corresponds to the last byte of a RLC SDU.

	01
	First byte of the Data field corresponds to the first byte of a RLC SDU.

Last byte of the Data field does not correspond to the last byte of a RLC SDU.

	10
	First byte of the Data field does not correspond to the first byte of a RLC SDU.

Last byte of the Data field corresponds to the last byte of a RLC SDU.

	11
	First byte of the Data field does not correspond to the first byte of a RLC SDU.

Last byte of the Data field does not correspond to the last byte of a RLC SDU.

6.2.2.7
Segment Offset (SO) field

Length: 15 bits or 16bits (16 bits is configurable).

The SO field indicates the position of the AMD PDU segment in bytes within the original AMD PDU. Specifically, the SO field indicates the position within the Data field of the original AMD PDU to which the first byte of the Data field of the AMD PDU segment corresponds to. The first byte in the Data field of the original AMD PDU is referred by the SO field value "000000000000000" or "0000000000000000", i.e., numbering starts at zero.

6.2.2.8
Last Segment Flag (LSF) field

Length: 1 bit.

The LSF field indicates whether or not the last byte of the AMD PDU segment corresponds to the last byte of an AMD PDU. The interpretation of the LSF field is provided in Table 6.2.2.8-1.

Table 6.2.2.8-1: LSF field interpretation

	Value
	Description

	0
	Last byte of the AMD PDU segment does not correspond to the last byte of an AMD PDU.

	1
	Last byte of the AMD PDU segment corresponds to the last byte of an AMD PDU.

6.2.2.9
Data/Control (D/C) field

Length: 1 bit.

The D/C field indicates whether the RLC PDU is a RLC data PDU or RLC control PDU. The interpretation of the D/C field is provided in Table 6.2.2.9-1.

Table 6.2.2.9-1: D/C field interpretation

	Value
	Description

	0
	Control PDU

	1
	Data PDU

6.2.2.10
Re-segmentation Flag (RF) field

Length: 1 bit.

The RF field indicates whether the RLC PDU is an AMD PDU or AMD PDU segment. The interpretation of the RF field is provided in Table 6.2.2.10-1.

Table 6.2.2.10-1: RF field interpretation

	Value
	Description

	0
	AMD PDU

	1
	AMD PDU segment

6.2.2.11
Polling bit (P) field

Length: 1 bit.

The P field indicates whether or not the transmitting side of an AM RLC entity requests a STATUS report from its peer AM RLC entity. The interpretation of the P field is provided in Table 6.2.2.11-1.

Table 6.2.2.11-1: P field interpretation

	Value
	Description

	0
	Status report not requested

	1
	Status report is requested

6.2.2.12
Reserved 1 (R1) field

Length: 1 bit.

The R1 field is a reserved field for this release of the protocol. The transmitting entity shall set the R1 field to "0". The receiving entity shall ignore this field.

6.2.2.13
Control PDU Type (CPT) field

Length: 3 bits.

The CPT field indicates the type of the RLC control PDU. The interpretation of the CPT field is provided in Table 6.2.2.13-1.

Table 6.2.2.13-1: CPT field interpretation

	Value
	Description

	000
	STATUS PDU

	001-111
	Reserved

(PDUs with this coding will be discarded by the receiving entity for this release of the protocol)

6.2.2.14
Acknowledgement SN (ACK_SN) field

Length: 10 bits or 18 bits (18 bits is configurable).

The ACK_SN field indicates the SN of the next not received RLC Data PDU which is not reported as missing in the STATUS PDU. When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all AMD PDUs up to but not including the AMD PDU with SN = ACK_SN have been received by its peer AM RLC entity, excluding those AMD PDUs indicated in the STATUS PDU with NACK_SN and portions of AMD PDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend.

6.2.2.15
Extension bit 1 (E1) field

Length: 1 bit.

The E1 field indicates whether or not a set of NACK_SN, E1 and E2 follows. The interpretation of the E1 field is provided in Table 6.2.2.15-1.

Table 6.2.2.15-1: E1 field interpretation

	Value
	Description

	0
	A set of NACK_SN, E1 and E2 does not follow.

	1
	A set of NACK_SN, E1 and E2 follows.

6.2.2.16
Negative Acknowledgement SN (NACK_SN) field

Length: 10 bits or 18 bits (18 bits is configurable).

The NACK_SN field indicates the SN of the AMD PDU (or portions of it) that has been detected as lost at the receiving side of the AM RLC entity.

6.2.2.17
Extension bit 2 (E2) field

Length: 1 bit.

The E2 field indicates whether or not a set of SOstart and SOend follows. The interpretation of the E2 field is provided in Table 6.2.2.17-1.

Table 6.2.2.17-1: E2 field interpretation

	Value
	Description

	0
	A set of SOstart and SOend does not follow for this NACK_SN.

	1
	A set of SOstart and SOend follows for this NACK_SN.

6.2.2.18
SO start (SOstart) field

Length: 15 bits or 16 bits (16 bits is configurable).

The SOstart field (together with the SOend field) indicates the portion of the AMD PDU with SN = NACK_SN (the NACK_SN for which the SOstart is related to) that has been detected as lost at the receiving side of the AM RLC entity. Specifically, the SOstart field indicates the position of the first byte of the portion of the AMD PDU in bytes within the Data field of the AMD PDU. The first byte in the Data field of the original AMD PDU is referred by the SOstart field value "000000000000000" or "0000000000000000", i.e., numbering starts at zero.

6.2.2.19
SO end (SOend) field

Length: 15 bits or 16 bits (16 bits is configurable configurable).

The SOend field (together with the SOstart field) indicates the portion of the AMD PDU with SN = NACK_SN (the NACK_SN for which the SOend is related to) that has been detected as lost at the receiving side of the AM RLC entity. Specifically, the SOend field indicates the position of the last byte of the portion of the AMD PDU in bytes within the Data field of the AMD PDU. The first byte in the Data field of the original AMD PDU is referred by the SOend field value "000000000000000" or "0000000000000000", i.e., numbering starts at zero. The special SOend value "111111111111111" or "1111111111111111"is used to indicate that the missing portion of the AMD PDU includes all bytes to the last byte of the AMD PDU.

7
Variables, constants and timers

7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables and all counters are non-negative integers.

All state variables related to AM data transfer can take values from 0 to 0 to [2[sn-FieldLength-AM] – 1]. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 2[sn-FieldLength-AM]).

All state variables related to UM data transfer can take values from 0 to [2[sn-FieldLength] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[sn-FieldLength]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 2[sn-FieldLength-AM]-1 for AMD PDU and 0 to [2[sn-FieldLength] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used.

VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 2[sn-FieldLength-AM] <= [SN – VR(R)] modulo 2[sn-FieldLength-AM] < [VR(MR) – VR(R)] modulo 1024).

VR(UH) – UM_Window_Size shall be assumed as the modulus base at the receiving side of an UM RLC entity. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. (VR(UH) – UM_Window_Size) <= SN < VR(UH) is evaluated as [(VR(UH) – UM_Window_Size) – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength] <= [SN – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength] < [VR(UH) – (VR(UH) – UM_Window_Size)] modulo 2[sn-FieldLength]).

The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

d) POLL_SN – Poll send state variable

This state variable holds the value of VT(S)-1 upon the most recent transmission of a RLC data PDU with the poll bit set to “1”. It is initially set to 0.

The transmitting side of each AM RLC entity shall maintain the following counters:

a) PDU_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of AMD PDUs sent since the most recent poll bit was transmitted.

b) BYTE_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of data bytes sent since the most recent poll bit was transmitted.

c) RETX_COUNT – Counter

This counter counts the number of retransmissions of an AMD PDU (see subclause 5.2.1). There is one RETX_COUNT counter per PDU that needs to be retransmitted.

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(MR) – Maximum acceptable receive state variable

This state variable equals VR(R) + AM_Window_Size, and it holds the value of the SN of the first AMD PDU that is beyond the receiving window and serves as the higher edge of the receiving window.

c) VR(X) – t-Reordering state variable

This state variable holds the value of the SN following the SN of the RLC data PDU which triggered t-Reordering.

d) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the highest possible value of the SN which can be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.

e) VR(H) – Highest received state variable

This state variable holds the value of the SN following the SN of the RLC data PDU with the highest SN among received RLC data PDUs. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering. It is initially set to 0. For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
b) VR(UX) – UM t-Reordering state variable

This state variable holds the value of the SN following the SN of the UMD PDU which triggered t-Reordering.

c) VR(UH) – UM highest received state variable

This state variable holds the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs, and it serves as the higher edge of the reordering window. It is initially set to 0. For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
7.2
Constants

a) AM_Window_Size

This constant is used by both the transmitting side and the receiving side of each AM RLC entity to calculate VT(MS) from VT(A), and VR(MR) from VR(R). AM_Window_Size = 512 when 10 bit SN is configured, and AM_Window_Size = 131072 when 18 bit SN is configured.

b) UM_Window_Size

This constant is used by the receiving UM RLC entity to define SNs of those UMD PDUs that can be received without causing an advancement of the receiving window. UM_Window_Size = 16 when a 5 bit SN is configured, UM_Window_Size = 512 when a 10 bit SN is configured, UM_Window_Size = 131072 when 18 bit SN is configured and UM_Window_Size = 0 when the receiving UM RLC entity is configured for MCCH, MTCH or STCH.

_1278247342.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

E�

FI�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [2+1.5*K-1]

...

Oct [2+1.5*K-2]

Oct [2+1.5*K-3]

Oct [2+1.5*K]

_1499095246.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [3.5+1.5*K]

Oct [3.5+1.5*K-1]

Oct [3.5+1.5*K-2]

Oct [3.5+1.5*K-3]

Oct [3.5+1.5*K-4]

Oct [3.5+1.5*K+1]

Present if K >= 3�

SN�

Oct 6

_1499095254.vsd
�

テキスト�

SO�

SO�

LSF�

Oct 3

Oct 4

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [6.5+1.5*K]

Oct [6.5+1.5*K-1]

Oct [6.5+1.5*K-2]

Oct [6.5+1.5*K-3]

Oct [6.5+1.5*K-4]

Oct [6.5+1.5*K+1]

Present if K >= 3�

SO�

Padding

SN�

_1499770942.vsd
�

R1�

R1�

R1�

FI�

E�

SN�

SN�

�

Data�

...

Oct 3

Oct N

Oct 1

Oct 2

SN�

Oct 4

_1499770943.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

R1�

R1�

R1

FI

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [3.5+1.5*K]

Oct [3.5+1.5*K-1]

Oct [3.5+1.5*K-2]

Oct [3.5+1.5*K-3]

Oct [3.5+1.5*K-4]

Oct [3.5+1.5*K+1]

Present if K >= 3�

SN�

Oct 6

_1499770944.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

R1�

R1

R1�

FI�

E�

SN�

SN�

�

Data�

Oct [3+1.5*K-1]

Oct [3+1.5*K-2]

Oct [3+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [3+1.5*K]

SN�

Oct 6

_1499095256.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+6]

Oct [2*K+5]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

E�

LIK�

LIK�

Oct [2*K+7]

SO�

SO�

LSF�

Oct 3

Oct 4

Padding�

SO�

SN�

Oct 7

Oct 8

_1499095258.vsd
�

D/C�

ACK_SN�

NACK_SN�

CPT�

E1

ACK_SN�

ACK_SN�

E1

NACK_SN

E1

E2

SOend

SOend

NACK_SN

Oct 1

Oct 2

NACK_SN

Oct 10

Oct 11

Oct 12

Oct 13

Oct 14

E2

NACK_SN

NACK_SN

SOstart

SOstart

...

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

_1499095255.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [6+1.5*K-1]

Oct [6+1.5*K-2]

Oct [6+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [6+1.5*K]

SO�

SO�

LSF�

Oct 3

SO�

Oct 4

SN�

Padding

Oct 8

Oct 9

_1499095248.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+3]

Oct [2*K+2]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+4]

SN�

Oct 5

_1499095253.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 5

Oct N

Oct 1

Oct 2

SO�

SO�

LSF�

Oct 3

Oct 4

SN�

SO�

Oct 6

Padding

_1499095247.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [3+1.5*K-1]

Oct [3+1.5*K-2]

Oct [3+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [3+1.5*K]

SN�

Oct 6

_1462107656.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+2]

Oct [2*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+3]

_1499095245.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 3

Oct N

Oct 1

Oct 2

SN�

Oct 4

_1465721603.vsd
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+4]

Oct [2*K+3]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

...

E�

LIK�

LIK�

Oct [2*K+5]

SO�

SO�

LSF�

Oct 3

Oct 4

_1278247417.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

E

FI

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K-5]

Oct [2.5+1.5*K]

Present if K >= 3�

_1264945963.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 3

Oct N

Oct 1

Oct 2

_1278245592.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

R1�

R1

R1�

FI�

E�

SN�

SN�

�

Data�

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [2+1.5*K]

_1278245593.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

R1�

R1�

R1

FI

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if K >= 3�

_1264946075.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2+1.5*K-1]

Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [2+1.5*K]

_1264946239.vsd
�

テキスト�

SO�

SO�

LSF�

Oct 3

Oct 4

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [4.5+1.5*K]

Oct [4.5+1.5*K-1]

Oct [4.5+1.5*K-2]

Oct [4.5+1.5*K-3]

Oct [4.5+1.5*K-4]

Oct [4.5+1.5*K+1]

Present if K >= 3�

_1264946501.vsd
�

LI2�

E�

LI2�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [4+1.5*K-1]

Oct [4+1.5*K-2]

Oct [4+1.5*K+1]

...

Oct N

Oct 1

Oct 2

Oct 5

Oct 6

Oct 7

...

LIK�

E�

LIK�

E�

LIK-1�

LIK-1�

Oct [4+1.5*K]

SO�

SO�

LSF�

Oct 3

Oct 4

_1264946209.vsd
�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

...

Oct 5

Oct N

Oct 1

Oct 2

SO�

SO�

LSF�

Oct 3

Oct 4

_1264946031.vsd
�

テキスト�

LI2�

E�

LI2 (if K>=3)�

E�

LI1�

LI1�

D/C�

RF�

P�

FI

E�

SN�

SN�

�

Data�

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

Oct 5

...

LIK-1�

E�

LIK-1�

E�

LIK-2�

LIK-2�

...

Padding�

E�

LIK�

LIK�

Oct [2.5+1.5*K]

Oct [2.5+1.5*K-1]

Oct [2.5+1.5*K-2]

Oct [2.5+1.5*K-3]

Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if K >= 3�

_1264945857.vsd
�

E�

FI�

SN�

�

Data�

...

Oct N

Oct 1

Oct 2

_1264945890.vsd
�

R1�

R1�

R1�

FI�

E�

SN�

SN�

�

Data�

...

Oct 3

Oct N

Oct 1

Oct 2

_1262705983.vsd
�

�

Data�

...

Oct 1

Oct N

_1262707143.vsd
�

D/C�

NACK_SN�

CPT�

E1�

ACK_SN�

ACK_SN�

�

E1

E1

E2

Oct 1

Oct 2

E2

NACK_SN

NACK_SN

SOend

SOstart

SOstart

SOend

SOend

�

...

NACK_SN

Oct 3

Oct 4

Oct 5

Oct 6

Oct 7

Oct 8

Oct 9

