Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #87bis
Tdoc R2-144372
Shanghai, P.R. China, 6th – 10th October 2014
Agenda Item:
7.1.3.1
Source:
Ericsson
Title:
PDCP split bearer reordering algorithm
Document for:
Discussion, Decision
1 Introduction

In RAN2#86 PDCP of split bearer reordering had been discussed and the following agreements were made with respect to the implementation of the reordering algorithm:

Agreements:

=> PDCP performs Reordering --> Deciphering --> Header Decompression
=> Specify whole PDCP reordering procedure in separate section using absolute value operation.
=> The PDCP starts reordering function immediately after receiving split bearer configuration message.

An email discussion [1] was started in RAN2#86 to further discuss PDCP reordering algorithm for split bearers. The topic was not further discussed in RAN2#87. Furthermore, in email discussion [2], which was initiated in RAN2#87, the text proposal from [1] had been further developed. In this contribution we would like to discuss the remaining issues.

2 Details of reordering algorithm
2.1 Processing before discarding of out-of-window PDUs
In the RAN2 email discussion [1], a baseline text proposal had been established implementing the new PDCP reordering functionality in a separate section with absolute value operation and employing a PUSH based discard window, i.e. PDUs received outside of the window are discarded.

It had also been discussed whether PDUs outside of the window shall be processed (especially ROHC decompressed) before being discarded. This is done in the legacy reception algorithm because it is a necessary part of the PDCP reestablishment procedure (e.g. at MeNB key change). As PDCP reestablishment is also supported for split bearers, processing of discarded PDUs received out of the window should thus also be included in the new reordering algorithm.

Proposal 1 As in legacy behaviour, also in the new reordering algorithm, PDUs received outside of the discard window are processed before they are discarded.
Example: PDCP reestablishment is invoked, which resets the header compression protocol. Afterwards, ROHC context update (IR) is received outside of window (e.g. because eNB unnecessarily retransmits since it was unaware of its delivery status before). Subsequent in-window PDUs need to be header decompressed based on this IR packet received outside of the window before.

The necessity of this behaviour is illustrated in the following:

· PDU1 is IR for ROHC A

· PDU2 decompressed based on PDU1 (ROHC A)

· PDU3 decompressed based on PDU2 (ROHC A)

· MeNB handover, PDCP reestablishment, ROHC reset, MeNB starts retransmission of unacknowledged PDUs, e.g. starting with at PDU 2

· PDU2 is IR for ROHC B (received out of window, Last_Submitted_PDCP_RX_SN == 3)

· PDU3 decompressed based on PDU2 (ROHC B) (also received out of window)

· PDU4 needs to be decompressed based on PDU 3 (ROHC B), for that it is necessary that PDU 3 had been processed (and also PDU2)
It is noteworthy that in this example for illustration purposes only one PDU (PDU2) is assumed to be received out-of-window, but in a real system this could also happen to several subsequent PDUs. In this case the impact on the ROHC decompression would be even more severe.

Necessary changes compared to the baseline TP from [2] are highlighted in the Annex in green.

2.2 Processing before discarding of in-window PDUs

Another issue that had been brought up by other companies in [1] is how duplicate PDUs received inside the reordering window should be processed. In the legacy reception algorithm, those duplicates are also processed before they are discarded.

Generally, in order to maintain correct ROHC functionality, reordering needs to take place before decompression. For a split bearer, it may happen that a duplicate PDU based on a new ROHC context is received inside the reordering window, but out of order, while the PDU with the same SN but based on the ROHC context from before the reestablishment still maintains in the reordering buffer. It is important to update the ROHC context based on the new PDU, so that subsequently received PDUs can be decompressed successfully. However, reordering of the new PDU needs to take place first, so that previous undelivered PDUs are not affected by the ROHC update. As explained in [1], the new duplicate PDU received inside the window needs to replace the current PDU.

Proposal 2 Duplicate PDUs received inside of the discard window replace stored PDUs. Then, decompression happens after reordering.
This is further illustrated in the following example:
· PDU1 is IR for ROHC A

· PDU2 is NOT yet received (ROHC A)

· PDU3 received (ROHC A)

· MeNB handover, PDCP reestablishment, ROHC reset, MeNB starts retransmission of unacknowledged PDUs, e.g. starting with at PDU 2; according to [2], agreements A11/A12, PDU 3 is decompressed and stored as SDU in reordering buffer

· PDU4 is received out of sequence (based on ROHC B), stored in buffer, since received in-window

· PDU3 is received out of sequence (based on ROHC B), with current TP it would be discarded since SDU 3 is already available (in-window)
· PDU2 is received, it is IR for ROHC B (received in window, Last_Submitted_PDCP_RX_SN == 1)
· PDU2, SDU3 are delivered
· PDU4 and subsequent PDUs need to be decompressed based on new ROHC B, for that it was necessary that the duplicate PDU3 had been reordered and processed (before PDU4), in order to update the context ROHC B
We note also here, that in this simplified example only one duplicate PDU is assumed, but that in a real system several duplicate PDUs might be received. And an incorrect handling of those several duplicates could have an even more severe impact on ROHC decompression.

Necessary changes compared to the baseline TP from [2] are highlighted in the Annex in blue.
3 On the PDCP SN space

It is of high importance for the PDCP transmitter to not bring more than half the SN space in flight, in order to avoid HFN de-synch. For legacy bearer, the PDCP transmitter observes feedback from RLC of successful delivery to determine the amount of PDCP PDUs currently in flight. For the split bearer, a feedback mechanism from SeNB to MeNB had been agreed in RAN3 [3], to inform the PDCP transmitter also about successful deliveries of the SCG RLC.

Having knowledge about successfully delivered PDCP PDUs via both MCG RLC and SCG RLC, the MeNB PDCP transmitter can estimate the current PDCP window state in the UE (delivered PDCP SDUs or PDUs in reordering buffer) and thus avoid bringing more than half the SN space into flight.

However, depending on MeNB implementation complexity, this estimation could potentially be inaccurate, and to be on the safe side, the MeNB would throttle down its transmission rate.

The relation between maximum possible throughput and round trip time (RTT) is shown in Figure 4 for a PDU size of 1500 byte and for two different SN spaces, based on 15 bit and 12 bit, respectively. For split bearers in dual connectivity, various delays contribute to the RTT, e.g. X2 delay, queuing in SeNB, varying need for RLC retransmissions on MeNB and SeNB link, and consequently PDCP reordering in UE. From Figure 1 it becomes obvious that throughput e.g. higher than 50Mbit/s cannot be supported by RTTs higher than 400ms with 12 bit SNs.

[image: image1.png]Max throughput to keep PDCP data in fight below half SN space [PDU size 1500byte]

—E— 5N 15bit
E —*—SN 12bit

Max throughput [Mbit/s]

'

10

01 02 03 04 05 06 07 08 09 1
RITT below PDCP in s

Figure 1: Maximum possible throughput for different PDCP SN number spaces.

To support higher throughputs and at the same time to avoid potential HFN de-synch, it needs to be ensured that the PDCP SN space is large enough in dual connectivity. Currently, the SN length of 15 bits seems sufficient, but according to TS 36.306 [4] the support of 15 bit SN is optional. We should make sure that it is mandatory instead for dual connectivity capable UEs.

Proposal 3 Support of 15 bit PDCP SN size is mandatory for dual connectivity capable UEs.
4 Conclusion

Based on the discussion above we propose the following.
Proposal 1
As in legacy behaviour, also in the new reordering algorithm, PDUs received outside of the discard window are processed before they are discarded.
Proposal 2
Duplicate PDUs received inside of the discard window replace stored PDUs. Then, decompression happens after reordering.
Proposal 3
Support of 15 bit PDCP SN size is mandatory for dual connectivity capable UEs.

5 References

[1] R2-143125, Report on [86#30][LTE/DC] Implementation of PDCP reordering function in PDCP specification, Samsung, RAN2#87, 18 to 22 August 2014, Dresden, Germany

[2] Report on [87#23][LTE/DC] PDCP issues, Samsung, RAN2#87bis, Shanghai, P.R. China, 6th – 10th October 2014
[3] R2-142751, Reply LS on reporting of successfully delivered PDCP PDUs, 3GPP RAN3, RAN3#84, Seoul, South Korea, 19th – 23rd May 2014

[4] 3GPP TS 36.306, User Equipment (UE) radio access capabilities, Release 12
6 Annex: PDCP reordering text proposal
5.1.2.1.X
Procedures for split bearer (TP from [2])

5.1.2.1.X.1
 Procedures when a PDCP PDU is received from the lower layer

For split bearer, at reception of a PDCP Data PDU from lower layers, the UE shall:
-
if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;
-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP PDU;
-
else if Next_PDCP_RX_SN – received PDCP SN > Reordering_Window:

-
increment RX_HFN by one;

-
associate COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
associate COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN >= Next_PDCP_RX_SN:

-
associate COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
if Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
associate COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;
-
if the PDCP PDU has not been discarded in the above:

- if a PDCP PDU with the same PDCP SN or SDU associated with the same COUNT value is stored:

-
replace the stored PDU or SDU by the received PDU.
-
discard this PDCP PDU;
- else:

-
store the PDCP PDU;
-
if received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN:

-
perform deciphering and header decompression (if configured) in ascending order of the associated COUNT value:

-
all stored PDCP PDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.

-
if reorderingTimer is running:
-
if PDU with Reordering_PDCP_RX_COUNT -1 has been delivered to upper layers.
-
stop and reset reorderingTimer;
-
if reorderingTimer is not running:

-
if Next_PDCP_RX_SN - Last_Submitted_PDCP_RX_SN > 1 or 0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN:

-
start reorderingTimer.
-
set Reordering_PDCP_RX_COUNT to the COUNT value associated to RX_HFN and Next_PDCP_RX_SN.

5.1.2.1.X.2
 Procedures when reorderingTimer expires

When reorderingTimer expires, the UE shall:
-
perform deciphering and header decompression (if configured) in ascending order of the associated COUNT value:
-
all stored PDCP PDU(s) with an associated COUNT value(s) less than Reordering_PDCP_RX_COUNT;
-
all stored PDCP PDU(s) with consecutively associated COUNT value(s) starting from Reordeing_PDCP_RX_COUNT;

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) less than Reordering_PDCP_RX_COUNT;

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from Reordeing_PDCP_RX_COUNT;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;

-
if Next_PDCP_RX_SN - Last_Submitted_PDCP_RX_SN > 1 or 0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN:

-
start reorderingTimer.
-
set Reordering_PDCP_RX_COUNT to the COUNT value associated to RX_HFN and Next_PDCP_RX_SN.

3/5

