3GPP TSG-RAN WG2 Meeting #87
R2-143369
Dresden, Germany, 18 - 22 August 2014
(revision of R2-142087)
Agenda item:

7.1.4.1
Source:
Nokia Networks, Nokia Corporation
Title:
PDCP window handling for split bearers
WID/SID:
LTE_SC_enh_dualC-Core – Release 12
Document for:

Discussion and Decision

1
Introduction

Between this and the previous RAN2 meeting, a RAN2 e-mail discussion took place, labelled and titled “[86#30][LTE/DC] Implementation of PDCP reordering function in PDCP specification”. Over the course of that discussion, it became evident that companies still have different views on whether the PDCP reception window for split bearer should be a pushed or pulled window. Surprisingly, this question was deemed out of scope of that discussion, which is why this contribution addresses that question.
2
Pulled or pushed PDCP reordering window
In the RLC UM as specified today, because there is no acknowledgement feedback whatsoever available to a transmitting entity, it has no knowledge of the reordering-window status at the peer entity. Therefore the transmitting entity cannot know any better than to keep transmitting at its own pace. At the receiving peer entity, the reordering-window handling is adapted to this so that advancement of the window is forced by the highest-numbered received PDUs pulling it forward: the window is defined as half the SN space behind the highest-numbered received PDU at any given time. Those data buffered to wait for missing packets, that are left behind the window in the process, are flushed from the buffer and delivered to higher layer. 
In the current RLC AM, in contrast, the transmitter knows the reordering-window status at the peer entity thanks to acknowledgement feedback. This allows the transmitter to pace itself according to the reception status and refrain from transmitting PDUs that would fall outside the reordering window at the receiver. Accordingly, the reordering window can be advanced as being pushed ahead the last data received in sequence and delivered to higher layer, and the window is defined as half the SN space ahead of the corresponding AMD PDU.
We now lay down properties of each reordering-window type if adopted to PDCP for split bearers:
1. If the RLC-UM-type pulled window is adopted for PDCP reordering:

a. when a PDU outside the window is received:

i. the PDU is assumed to be the highest-numbered PDU received so far, and is adopted as the new reference for COUNT (Next_PDCP_RX_SN, RX_HFN);

ii. the PDU then defines the new leading edge of the reordering window;

iii. PDUs falling out of the lower edge of the window are delivered to upper layers.

b. when the reordering timer expires:

i. consecutive SDUs are delivered to upper layers, ignoring any SDUs missing at the time the timer was started;

ii. the SN of the earliest PDU still considered for reordering is advanced (but the reordering window is not)
2. If the pushed window from the currently specified PDCP mapped on RLC AM is adopted (and combined with the agreed UM-like reordering timer):
a. when a PDU outside the window is received:

i. (As currently specified for PDCP:) the COUNT value associated with the SDU is assumed to be behind the current reordering window, but is not used as a further COUNT-value reference;
ii. the PDU/SDU is discarded

b. when the reordering timer expires:

i. consecutive SDUs are delivered to upper layers, ignoring any SDUs missing at the time the timer was started;

ii. consequently, Last_Submitted_PDCP_RX_SN and hence the reordering window is advanced.

Assuming 15-bit PDCP SN and IP-packet size of 1500 bytes, the PDCP reordering window corresponds to 24MB of data. Assuming e.g. a fraction 2/5 (corresponding to a fraction of carriers in use at MeNB) of the 3Gbps maximum bitrate of a category-8 UE, this amount of data can in theory be transmitted within 160ms. Against this background, it is important for the transmitting PDCP to maintain on idea of to what extent it can keep transmitting further PDCP PDUs such that PDUs outside the reordering window are not received at the peer PDCP entity.
We continue with further considerations of each window type.
2.1
If a pulled window is used
By property 1.a.i. above, if a PDU that is already left behind the reordering window is still received, HFN de-sync occurs. We note that, unlike claimed in [3], this is not limited to a “rare case” of SN wraparound having occurred or about to occur, since the receiver always infers the received COUNT value a full SN space in error:
Assume SN space 0..15, i.e. size of pulled window is 8

-
Next_PDCP_RX_SN = 12, i.e. window is 4..11

-
a delayed PDU with SN=2 received

Even though no SN wraparound has happened, the receiver will falsely assume that the received PDU is 6 SNs ahead of Next_PDCP_RX_SN, i.e. assumes the wrong HFN.
Observation 1:
With pulled window, HFN de-sync from reception of a PDU left behind the window is independent of vicinity of SN wraparound.
Even with the agreed mechanism in place where the transmitting PDCP at MeNB will receive indications of PDUs successfully delivered, what remains problematic is the case when such an indication of successful delivery, for a PDU sent via SeNB, is found to remain lacking. The next section is devoted to this case.
2.1.1
Case: increase in TX-queueing time at SeNB
Assume that the channel between the SeNB and the UE suddenly gets worse, causing the queueing time of PCDP PDUs for transmission at the SeNB to increase. The MeNB observes this as the indication from SeNB of successful delivery of PDUs starting from some SN=X remaining lacking for an extended period of time.
At some point the MeNB can have received local RLC indications of successful delivery of all directly-transmitted PDCP PDUs up to some SN>X. After that, once twice
 the configured expiry time of the UE’s PDCP reordering timer passes, the MeNB knows that not even the UE is anymore waiting for PDCP PDUs whose successful delivery is still not confirmed by SeNB.
Alternatively, at some point the MeNB may have decided to retransmit directly to the UE PDCP PDUs for which indication of successful delivery by SeNB have been lacking, and received a local RLC indication of their successful delivery.

When the MeNB has information like this, it clearly makes sense for it to proceed with its PDCP transmission (window) according to the known status at the UE, instead of letting the delay at SeNB stall it indefinitely.
Proposal 1:
When data delivery via SeNB is delayed, MeNB is allowed to progress its PDCP transmission (window) according to known status at UE, instead of letting the delay at SeNB stall it indefinitely.

But once the MeNB goes ahead to transmit PDUs with SN > X + Reordering_window, it opens the door to the UE receiving the PDCP PDUs starting from SN=X, whose transmission the SeNB has finally got to, and which will have been left behind the PDCP reordering window at the UE. This possibility would not be removed even if we were to have in place discard indications from MeNB to SeNB – which may well be a good idea – by which the MeNB could instruct SeNB to cancel transmission of PDCP PDUs with given SN(s), because such indications would still be subject to the X2 delay.
Observation 2:
To avoid risk of HFN de-sync, use of a pulled PDCP reordering window prevents MeNB from operating according to Proposal 1, which limits performance.
For this reason, we propose not to use a pulled PDCP reordering window:
Proposal 2:
The reordering window in a PDCP entity configured for reordering is pushed by Last_Submitted_PDCP_RX_SN (like currently specified for PDCP mapped on RLC AM).
2.2
If a pushed window is used
As summarized in the beginning of this section, in this case the PDCP reordering window would be handled much like the one currently specified for PDCP mapped on RLC AM.
If a PDCP PDU too far ahead of Last_Submitted_PDCP_RX_SN is delivered to the receiving PDCP, the PDU is discarded. On this topic, the following was agreed in RAN2#79bis:

	PDCP (De-Sync, Window and Bitmap size)
R2-124691
Discussion on the extended PDCP SN and PDCP status report
Samsung
Disc
Proposal 1: Transmitter shall not transmit beyond PDCP SN of (x + Reordering_window) where x is the SN of the first PDCP SDU whose successful delivery has not been confirmed by the lower layer.
-
<...>
=>
RAN2 confirms P1. Nothing needs to be captured.


More recently, this principle was endorsed by RAN2 also in the context of split bearers - although, as we clarify in Proposal 1 above, what matters in the end is the oldest PDU still considered for reordering at the receiving PDCP instead of x as defined above.
Given this principle to be followed by MeNB with the aid of the full PDCP delivery status also from SeNB (which RAN3 has now agreed to be in place), the main case for UE PDCP receiving out-of-window PDUs is the kind of late transmissions by SeNB discussed in section 2.1.1 instead of transmissions ahead of the UE’s window.
On the latter case – which may only happen in the rare event where an indication from SeNB to MeNB of lost PDCP PDU(s) goes missing in transit over X2 – it was claimed in [3] that the use of a pushed window creates a “systematic error” where PDUs previously discarded as being out-of-window keep re-starting the reordering timer over and over again, once the window actually reaches their SNs. In consideration of this, we think there are two things worth noting:
· in split-bearer operation, where a PDCP receives two sub-streams of PDUs over different paths with different delays in an interlaced manner, having the reordering timer running – and re-started soon after expiry - is more rule than exception;
· as becomes evident from all the text proposals brought forward, whenever the reordering timer is (re-)started, the reordering state variable (referred to as Reordering_PDCP_RX_COUNT in the past RAN2 e-mail discussion) takes into account all SNs received so far, i.e. the timer is not started once for every gap that exists in received SNs.
Observation 3:
The reordering timer being started over and over again in split-bearer operation is something to be expected, not a systematic error.
2.2.1
Possible new triggers for PDCP status reporting
To enhance the transmitting PDCP’s awareness of the reception-window status at the receiving peer entity, additional status-reporting triggers could come into question. Possible use cases and corresponding triggers are the following:

Use case 1:

When an indication from SeNB to MeNB of PDCP PDU(s) lost over X2 goes missing in transit over X2, the MeNB can assume that the UE’s reception window has progressed further than it actually has. As a result, MeNB PDCP can go ahead transmitting PDCP PDUs too far ahead, i.e. outside the UE’s current reception window.

Trigger 1:
To correct the MeNB’s false understanding ASAP, PDCP Status report could be sent when receiving PDCP PDUs outside the current reception window.

Use case 2:
The property 2.b.ii. listed in the beginning of this section means that because the receiving PDCP can advance its reordering window as determined by the reordering timer, the transmitting peer entity may not always have a correct understanding of the status of that window. This can result in the transmitting PDCP wasting resources for retransmissions already outside the reordering window, or refraining from transmitting further PDUs not to exceed the reordering window, more conservatively than necessary.
Trigger 2:
PDCP status report could be sent when the PDCP reordering timer expires.

We propose that RAN2 discuss these possible new triggers.

Proposal 3:
Discuss whether PDCP status report should be sent when 1) PDUs out of current reordering window are received, and/or 2) the PDCP reordering timer expires.
In both these events, whether the bitmap should ever be included in the status report is FFS. The main utility in such a status report would indeed come from the FMS field indicating the updated reordering-window status. In line with its current use, the received PDCP status report would only be used to determine PDUs whose transmission is no longer needed (as opposed to NACKs requesting retransmission). Thus, any possible benefit from an included bitmap indicating a snapshot of dispersed PDUs received at the moment when generated would only come into play when the status-reporting trigger happens to be shortly followed by another event where the bitmap is otherwise needed. This limited value needs to be balanced against the additional overhead from the bitmap.
3
Handling of reordering and deciphering
During RAN2#86 meeting, the order of operations when a PDU is received was decided as following:

=>
PDCP performs Reordering --> Deciphering --> Header Decompression
This is in contrast to legacy-PDCP operation where a PDU is always deciphered at reception.

In the RAN2 e-mail discussion “[86#31][LTE/DC] PDCP reordering after split bearer reconfiguration towards MCG bearer”, the majority of companies agreed that, because of remnants of previous legacy-PDCP operation, this agreement can lead to the PDCP reception buffer containing both ciphered and deciphered PDUs. This means that:
-
in split-bearer operation, PDCP needs to keep track of which PDUs are ciphered, and decipher PDUs conditional to them still being ciphered;

-
because the processing order in the legacy PDCP procedure is not going to be changed, for the legacy procedure to work correctly after reconfiguration from split to MCG bearer, any ciphered PDUs will anyway need to be deciphered at such reconfiguration.
Weighing these impacts against the questionable benefits from having reordering before deciphering, we propose the following.

Proposal 4:
RAN2 reconsider the previous agreement to have reordering before deciphering in split-bearer PDCP operation.

4
Conclusion

This contribution discussed PDCP window handling and header decompression, and concluded with the following:
Observation 1:
With pulled window, HFN de-sync from reception of a PDU left behind the window is independent of vicinity of SN wraparound.
Observation 2:
To avoid risk of HFN de-sync, use of a pulled PDCP reordering window prevents MeNB from operating according to Proposal 1, which limits performance.

Observation 3:
The reordering timer being started over and over again in split-bearer operation is something to be expected, not a systematic error.

Proposal 1:
When data delivery via SeNB is delayed, MeNB is allowed to progress its PDCP transmission (window) according to known status at UE, instead of letting the delay at SeNB stall it indefinitely.

Proposal 2:
The reordering window in a PDCP entity configured for reordering is pushed by Last_Submitted_PDCP_RX_SN (like currently specified for PDCP mapped on RLC AM).
Proposal 3:
Discuss whether PDCP status report should be sent when 1) PDUs out of current reordering window are received, and/or 2) the PDCP reordering timer expires.

Proposal 4:
RAN2 reconsider the previous agreement to have reordering before deciphering in split-bearer PDCP operation.

In the Appendix, we provide a text proposal introducing the agreed reordering timer and the reordering window of Proposal 1 to PDCP. 
References

[1] 3GPP TS 36.322 Radio Link Control (RLC) protocol specification
[2] 3GPP TS 36.323 Packet Data Convergence Protocol (PDCP) specification
[3] R2-142400 PDCP reordering for split bearer in dual connectivity Ericsson
Appendix

Beginning of Text Proposal

5.1.2.1.2b
Procedures for DRBs when reordering by PDCP is configured [change marks compared to current section 5.1.2.1.2 Procedures for DRBs mapped on RLC AM]
For DRBs mapped on RLC AM, at reception of a PDCP Data PDU from lower layers, the UE shall:
-
if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:
-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP SDU;

-
else if Next_PDCP_RX_SN – received PDCP SN > Reordering_Window:

-
increment RX_HFN by one;

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
use COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN >= Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
if Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
if the PDCP PDU has not been discarded in the above:
-
perform deciphering for the PDCP PDU as specified in the subclause 5.6;
-
if a PDCP SDU with the same PDCP SN is stored:

-
discard this PDCP SDU;

-
else:

-
store the PDCP SDU;





-
if received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN:

-
perform header decompression (if configured and not done before) as specified in the subclause 5.5.5 and deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if reorderingTimer is running:

-
if VRX_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN + 1 or 
VRX_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN or
VRX_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 
0 <= Last_Submitted_PDCP_RX_SN – VRX_PDCP_RX_SN < Reordering_Window
:

-
stop and reset reorderingTimer;
-
if reorderingTimer is not running (includes the case when reorderingTimer is stopped due to actions above):

-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or 
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
5.1.2.1.2b.1
Actions when reorderingTimer expires
When reorderingTimer expires, the UE shall:

-
perform header decompression (if configured and not done before) as specified in the subclause 5.5.5 and deliver to upper layers in ascending order of the associated COUNT value: 
-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};

-
all possibly stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or 
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
[...]
7
Variables, constants and timers

7.1
State variables
This sub clause describes the state variables used in PDCP entities in order to specify the PDCP protocol.
All state variables are non-negative integers.
The transmitting side of each PDCP entity shall maintain the following state variables:

a)
Next_PDCP_TX_SN

The variable Next_PDCP_TX_SN indicates the PDCP SN of the next PDCP SDU for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_TX_SN to 0.

b)
TX_HFN

The variable TX_HFN indicates the HFN value for the generation of the COUNT value used for PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set TX_HFN to 0.

The receiving side of each PDCP entity shall maintain the following state variables:

c)
Next_PDCP_RX_SN

The variable Next_PDCP_RX_SN indicates the next expected PDCP SN by the receiver for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_RX_SN to 0.

d)
RX_HFN

The variable RX_HFN indicates the HFN value for the generation of the COUNT value used for the received PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set RX_HFN to 0.

e) Last_Submitted_PDCP_RX_SN

For PDCP entities for DRBs mapped on RLC AM the variable Last_Submitted_PDCP_RX_SN indicates the SN of the last PDCP SDU delivered to the upper layers. At establishment of the PDCP entity, the UE shall set Last_Submitted_PDCP_RX_SN to Maximum_PDCP_SN.
f) VRX_PDCP_RX_SN

For PDCP entities for DRBs mapped on two RLC entities the variable VRX_PDCP_RX_SN indicates the PDCP SN following the PDCP SN of the PDCP Data PDU which triggered reorderingTimer.
g) VRX_RX_HFN

For PDCP entities for DRBs mapped on two RLC entities the variable VRX_RX_HFN indicates the HFN value of the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered reorderingTimer.
7.2
Timers

The transmitting side of each PDCP entity for DRBs shall maintain the following timers:

a) discardTimer
The duration of the timer is configured by upper layers [3]. In the transmitter, a new timer is started upon reception of an SDU from upper layer.
The receiving side of each PDCP entity configured for reordering shall maintain the following timers:

b) reorderingTimer
The duration of the timer is configured by upper layers [3]. This timer is used to detect loss of PDCP PDUs (see sub clause 5.1.2.1.2b). If reorderingTimer is running, reorderingTimer shall not be started additionally, i.e. only one reorderingTimer per PDCP entity is running at a given time.
End of Text Proposal

� Twice because PDCP reordering timer may have already been running at the UE when receiving the PDCP PDUs with SN>X.



�Different cases of the general condition Last_Submitted_PDCP_RX_SN >= VRX_PDCP_RX_SN – 1

�Latter condition is the wraparound-case of the former

�Latter condition is the wraparound-case of the former



