
3GPP TSG-RAN WG2 #86
R2-142693
Seoul, Korea, 19th – 23rd May, 2014
Agenda item:
7.1.4
Source:
NVIDIA
Title:
PDCP Reordering for DL Split Bearer
Document for:
Discussion and Decision
1. Introduction
During RAN2#85bis meeting, the new PDCP reordering functionality needed to support DL split bearer was discussed, but it could not be agreed upon. Both location of this functionality inside PDCP, as well as reordering window handling have to be decided.

In this contribution, we detail our view on these questions.
2. Discussion
Location of the PDCP reordering function
As detailed in [1], 5 different options could be envisaged for the location of the PDCP reordering function. These options are indicated in Figure 1.

We agree with [1] that options 4 and 5 would not be the best places since RoHC decompression would have to be performed on an out-of-order stream, hence would not be optimized. It has been confirmed in RAN2#85bis meeting that RoHC would still need to be supported for DL split bearer.
Options 1 and 2 are quite similar; hence we will no longer consider option 2 in the following.

Remaining options would be 1 and 3. There is a significant difference between both options regarding deciphering:
· In option 1, deciphering is performed after reordering. This means that the so called “burst deciphering” would occur (bunch of PDCP PDUS being deciphered when delivered by the reordering function)

· In option 3, deciphering is performed before reordering. In that case, PDCP PDUs can be deciphered when delivered by RLC, as in legacy implementation
It has been pointed out in last meeting that “burst deciphering” is not considered to be an issue since it already occurs today, as RLC AM can deliver bunches of PDCP PDUs following HARQ reordering or ARQ processing. We agree that indeed, functionally, “burst deciphering” is not an issue. However, option 1 would lead to an increase in “burst deciphering” occurrences as well as an increase in the number of PDCP PDUs to be deciphered in one shot. This increase can be avoided with option 3. From our view, option 1 would constraint the UE implementation to postpone significant processing it could have done right away, causing processing load spikes when the reordering function deliver PDCP PDUS.

[image: image1.emf]Split Bearer (3C)

E-UTRAN UE

Transmitting

PDCP entity

Ciphering

Header Compression (u-plane

only)

Receiving

PDCP entity

Sequence numbering

Add PDCP header

Header Decompression (u-

plane only)

Deciphering

Remove PDCP Header

In orderdelivery and duplicate

detection(u-plane only)

Packets associated

to a PDCP SDU

P

a

c

k

e

t

s

a

s

s

o

c

i

a

t

e

d

t

o

a

P

D

C

P

S

D

U

P

a

c

k

e

t

s

n

o

t

a

s

s

o

c

i

a

t

e

d

t

o

a

P

D

C

P

S

D

U

P

a

c

k

e

t

s

n

o

t

a

s

s

o

c

i

a

t

e

d

t

o

a

P

D

C

P

S

D

U

1

2

3

4

5

Figure 1
The following points can also be noted:

· RLC HARQ/ARQ related “burst deciphering” is expected to happen when there are HARQ or ARQ retransmissions, and as such, would tend to increase when BLER increases. In such cases, throughput would be limited so L2 processing load would not be the highest, and the number of PDCP PDUs accumulated during a given delay would also be reduced, which allows to handle the processing of load spikes easily.

· PDCP reordering related “burst deciphering” is expected to happen whenever the UE is in dual connectivity and is configured with a split bearer in downlink. This would typically happen in good radio conditions, in which throughput can be maximized. Hence the L2 processing load might already reach high values. Furthermore, the PDCP PDUs rate is also increased, which means more PDCP PDUs can be accumulated during a given delay. The number of PDCP PDUs to be deciphered in one shot would depend of the split performed by MeNB and of the X2 backhaul latency. If most packets are scheduled by MeNB, UE would have constantly to wait for SeNB packets before being able to start deciphering, causing a burst of all PDCP PDUs accumulated during a duration equivalent to the backhaul delay. Even in scenarios were packets are scheduled mostly by SeNB, it is possible to have PDCP PDUs dropped at SeNB, causing a burst of all PDCP PDUs accumulated during the duration of t-reordering timer. In our understanding there would be no strict requirement to not drop any of such PDCP PDUs in SeNB, hence even with an effective flow control mechanism on X2, this might happen in case of high load and increased congestion on the SeNB Uu interface due for instance to sudden degradation of radio conditions.

Based on this analysis, we think that the specification should not constraint the UE to perform the reordering before the deciphering.
In [1], preference is given to option 1 based on the fact that option 3 would be much more difficult to introduce in the PDCP specification (given the current specification structure), assuming performance of both options are similar. From our view, option 1 may degrade performance on some UE implementations, and it would actually constraint the UE implementation into an underperforming implementation. Hence we propose to choose option 3.
Proposal 1: The PDCP reordering function is located between Deciphering and Header decompression functions.
Reordering window handling

In the last meeting, it was discussed whether we should use a pushed window or a pulled window mechanism (see for instance [2]). A conclusion could not be reached, however the following point was noted:
· The PDCP transmitter should not bring more than half the sequence number space in flight in order to avoid HFN de-sync. (as in legacy behaviour)
And the following agreement was derived, in order for the PDCP transmitter to comply with this restriction:

· The SeNB provides to the MeNB PDCP SNs of the successfully delivered PDCP PDUs (based on RLC AM state in SeNB) among the ones that it received from the MeNB.

It is our understanding that, assuming the transmitter would not transmit more than half the PDCP SN space in flight, both pushed window and pulled window schemes are functionality equivalent. This is illustrated below by an example.
In this example, we have represented the state of the reordering window at a given instant, along with the two envisaged versions of the reordering windows (Figure 2). We then analyse how would be handled an incoming PDCP PDU with a given SN in both versions.

[image: image2.emf]PDCP SN Space (length 32 in this example)

Pushed Reordering Window (length 16)

Pulled Reordering Window (length 16)

PDU already submitted to

upper function blocks

PDU stored in the reordering buffer

No PDU received with this SN

1 2

3 4 5

HFNx

SN31

HFNx

SN0

Figure 2
We can note that thanks to the restriction assumed on the transmitter, there is no ambiguity on the HFN of this PDCP PDU. UE can be sure it will always be x (in this example). Moreover, only PDCP PDUs in the half SN space after last PDCP PDU submitted to upper layers are expected. We are left with three cases: 3, 4 and 5.
· Case 3: the PDCP PDU is the next to be submitted to upper layers.
· Case 4: the PDCP PDU is inside the pulled reordering window, but is not the next to be submitted.
· Case 5: the PDCP PDU is outside the pulled reordering window.
Note that t-reordering timer is running due to the first hole after the last PDCP PDU already submitted to upper layers. Let’s first assume that it has not yet expired when the new PDCP PDU is received.
If a pushed reordering window is used:

· Case 3: the PDCP PDU is submitted to upper layers. The pushed reordering window is advanced.

· Case 4: the PDCP PDU is stored.
· Case 5: the PDCP PDU is stored.

If a pulled reordering window is used:
· Case 3: the PDCP PDU is submitted to upper layers.

· Case 4: the PDCP PDU is stored.

· Case 5: the PDCP PDU is stored. The pulled reordering window is advanced.

Now let’s assume that t-reordering timer has expired when the new PDCP PDU is received (Figure 3). The pushed window has consequently advanced whereas the pulled window has not moved. In both cases the 3 PDCP PDUs stored after the hole have been delivered to upper layers when the reordering timer has expired. We have again only 3 possible cases: 3, 4 and 5.

[image: image3.emf]PDCP SN Space (length 32 in this example)

Pulled Reordering Window (length 16)

PDU already submitted to

upper function blocks

PDU stored in the reordering buffer

No PDU received with this SN

1 2

3 4 5

HFNx

SN31

HFNx

SN0

Pushed Reordering Window (length 16)

Figure 3
If a pushed reordering window is used:

· Case 3: The PDCP PDU is considered late and discarded.

· Case 4: The PDCP PDU and the 4 next consecutive ones are delivered to upper layers. The pushed reordering window is advanced.
· Case 5: The PDCP PDU is stored.

If a pulled reordering window is used:
· Case 3: The PDCP PDU is considered late and discarded (since before the “earliest PDCP PDU to be considered for reordering”)
· Case 4: The PDCP PDU and the 4 next consecutive ones are delivered to upper layers.

· Case 5: The PDCP PDU is stored. The pulled reordering window is advanced.
It can be seen that there are no functional differences between both schemes. They are just 2 different ways to describe the same algorithm.
Observation 1: If the PDCP transmitter does not bring more than half the sequence number space in flight, the pushed and pulled reordering window schemes are both functionality equivalent.
The main difference appears if we assume no restriction at the PDCP transmitter (“aggressive scheduling”, allowing more than half the PDCP SN space in flight). In such case the UE can receive a PDCP PDU out of the half SN space after last PDCP PDU submitted to upper layers. However there is an ambiguity on the HFN of such PDCP PDU: it depends on whether the UE considers such PDCP PDU as a late one or as a recent (“aggressive”) one.

In the current understanding of the pushed reordering window scheme, UE would always consider such PDCP PDU as a late one. In the pulled reordering window scheme, it depends.
Let’s consider

· Case 1, assuming it is a very late PDCP PDU (HFN = x)

· Case 1bis, assuming it is a little aggressive PDCP PDU (HFN = x+1)

· Case 2, assuming it is a little late PDCP PDU (HFN = x)

· Case 2bis, assuming it is a very aggressive PDCP PDU (HFN = x+1)

Basically, a PDCP PDU is said to be “little late” or “very aggressive” if it fits in the pulled reordering window part which has already be delivered to upper layers.

It is said to be “very late” or “little aggressive” if it does not fit in the pulled reordering window part which has already been delivered to upper layers.

If first t-reordering timer has not expired:

· If a pushed reordering window is used, UE will assume wrong HFN for both little and very aggressive cases.
· If a pulled reordering window is used, UE will assume wrong HFN for both very late and very aggressive cases.
If first t-reordering timer has expired:

· If a pushed reordering window is used, UE will assume wrong HFN for both very late and very aggressive cases.

· We note that little aggressive case is now ok thanks to the advance of the window.

· However, very late case is no longer ok because of the advance of the window.

· If a pulled reordering window is used, UE will assume wrong HFN for both very late and very aggressive cases.

We note that the pulled reordering window case is unchanged, which is expected given that the pulled reordering window does not move on t-reordering timer expiry.

Conversely, the pushed reordering window case is changed: due to the advance of the window, some little aggressive cases are now ok (since inside the new pushed reordering window), however the corresponding very late cases are no longer ok (i.e., if the received PDCP PDU was actually a very late one, the UE will confuse it with a little aggressive one).
Observation 2: If the PDCP transmitter does bring more than half the sequence number space in flight, pushed and pulled reordering window schemes are no longer functionality equivalent.
Observation 3: If the PDCP transmitter is allowed to bring more than half the sequence number space in flight, a careful analysis is needed to ensure that HFN desync can be avoided.
3. Conclusion
It is proposed to discuss and agree on the following:
Proposal 1: The PDCP reordering function is located between Deciphering and Header decompression functions.
Observation 1: If the PDCP transmitter does not bring more than half the sequence number space in flight, the pushed and pulled reordering window schemes are both functionality equivalent.

Observation 2: If the PDCP transmitter does bring more than half the sequence number space in flight, pushed and pulled reordering window schemes are no longer functionality equivalent.
Observation 3: If the PDCP transmitter is allowed to bring more than half the sequence number space in flight, a careful analysis is needed to ensure that HFN desync can be avoided.
References

[1] R2-141325, PDCP Reordering for Split Bearer, LG Electronics Inc
[2] R2-141178, PDCP window handling for Dual Connectivity, NSN, Nokia Corporation

_1461198366.vsd
Pulled Reordering Window (length 16)

Pushed Reordering Window (length 16)

PDCP SN Space (length 32 in this example)

PDU already submitted to upper function blocks

PDU stored in the reordering buffer

No PDU received with this SN

1

2

3

4

5

HFN x SN0

_1461205728.vsd
Pulled Reordering Window (length 16)

PDCP SN Space (length 32 in this example)

PDU already submitted to upper function blocks

PDU stored in the reordering buffer

No PDU received with this SN

1

2

3

4

5

HFN x SN0

