3GPP TSG-RAN WG2 Meeting #85bis
R2-141664
Valencia, Spain, 31 March – 4 April 2014
Agenda item:

7.1.4
Source:
Broadcom Corporation
Title:
PDCP reordering with split bearers
Document for:

Discussion
1
Introduction
The study item report of small cell enhancement [1] requires that the PDCP is required to take care of reordering the received PDCP PDUs before submitting the SDUs to the upper layers in Architecture 3C.
Reordering is needed, because the two parallel RLC entities below the PDCP cannot guarantee in-sequence delivery of the PDCP PDUs. Although each RLC entity guarantees in-sequence delivery on each transmission leg, the two legs are independent of each other. As the transmission delay through the MAC HARQ and RLC ARQ is variable, the receiving PDCP will often encounter temporary gaps in the row of PDCP sequence numbers. These temporary gaps will usually be quickly filled when the slower leg will get all pieces of the data delivered to the PDCP.

Sometimes, though not so frequently, there will also be non-temporary gaps in the chain of sequence numbers. They may be caused by

· The sending peer PDCP entity when it discards PDUs due to the expiry of the discardTimer
· Data loss in the X2 interface between the MeNB and SeNB

· One of the RLC entities hitting the maximum number of retransmissions.

As the gaps of this nature will not get filled just by waiting, other procedures are required.
This document discusses the details of the reordering and proposes new procedures to the PDCP specification [2]. Several rather similar proposals were submitted to the last meeting [3, 4, 5, 6] and this document is an attempt to combine those proposals. A text proposal to the PDCP specification is also given at the end of this document.
2
Discussion
2.1
Reordering timer
In principle, the RLC layer guarantees in the RLC AM that every RLC SDU will eventually be delivered to the PDCP as long as the link exists. If the maximum number of retransmission is achieved, it means in practise that a radio link failure has occurred. Therefore, the is no immediate need to back up the delivery of the PDCP SDUs to the upper layers by using a reordering timer to flush the reception buffer in case a gap in the PDU sequence is not filled in a reasonable time. Naturally, a timer is necessary to avoid a deadlock in the extreme cases, but the timer need not be designed for normal operation, but only to guarantee packet delivery also in the extreme situations. Consequently, a decision to use timer t-Reordering was made in the last meeting.

In addition, it was decided in the last meeting that reordering need not be supported in logical channels using RLC UM.

Confirmation: Introduce timer t-Reordering to the PDCP reordering procedure for split bearers using RLC AM.

The timer would obviously be started when there is a gap in the sequence of the PDCP PDUs. A very sophisticated timer procedure would start a new timer each time a new gap is seen, but that would require possibly quite a large number of timers. Hence, the simpler procedure would be based on the principle that a new gap in the PDU sequence would not cause any actions if the reordering timer is already running.

As PDCP PDUs are being received from two RLC entities on each logical channel, the timer should not be started before the PDCP has handled all the RLC PDUs that have been received at the same time (within the same TTI). If this convention were not applied, the timer would often be started unnecessarily when the missing PDUs are actually available in some local buffer.
Proposal 1: Start the timer t-Reordering when a gap in the PDCP PDU sequence is present after all RLC PDUs received within the same TTI have been processed if the timer is not already running.

When the timer expires, some part of the reordering buffer shall be flushed to the upper layer even if the gap has not been filled. If there are other gaps in the buffer, it is not good to flush the whole buffer, because some of the gaps may have been created quite recently. The simplest solution would be to flush the buffer up to the next gap and restart the timer, but that would lead to very slow data transmission if there are a lot of gaps in the buffer, because just one gap would be cleared each time the timer expires. A rather simple solution to this problem is to introduce a variable which marks the last PDU in the buffer each time the timer is started and, when the timer expires, the buffer is flushed up to that PDU and naturally also any in-sequence PDUs after that point. Let’s call this variable Reordering_PDCP_RX_SN. This arrangement guarantees that no PDU will reside in the buffer more than about two times the expiration time of the reordering timer. This helps in keeping the response times for the possible upper layer retransmissions (TCP, for instance) at a sensible level.

Proposal 2: When the timer t-Reordering is started, mark the last PDU in the reordering buffer with the variable Reordering_PDCP_RX_SN.

Proposal 3: When the timer t-Reordering expires, flush the reordering buffer up to the variable Reordering_PDCP_RX_SN and any in-sequence PDUs thereafter.

It must be taken care that the variable Reordering_PDCP_RX_SN is kept inside the reordering buffer, so the timer t-Reordering must be stopped if the start of the buffer passes the Reordering_PDCP_RX_SN when gaps get filled and data is delivered to the upper layer. The variable need not be updated when the reordering timer is not running, because the value of the variable is used only when the timer expires.
Proposal 4: The timer t-Reordering is stopped when variable Reordering_PDCP_RX_SN gets outside the reordering buffer when the timer t-Reordering is running.

The reordering timer naturally will need to be restarted and the variable Reordering_PDCP_RX_SN needs to be set again if there still are gaps in the buffer after the flush. In practice, this means that the flush did not get the buffer empty.

Proposal 5: The timer t-Reordering is restarted and the variable Reordering_PDCP_RX_SN is set to the last PDU in the buffer if the flush did not empty the buffer.
It is naturally not useful to keep the timer running when there are not gaps in the reordering buffer. In practice, it means that the reordering buffer is empty as all blocks can be forwarded to the upper layer in such a case. (In practise, this is a special case of the condition mentioned in Proposal 4.)
Proposal 6: The timer t-Reordering is stopped if the buffer becomes empty.

To illustrate the operation of the reordering timer and the variable Reordering_PDCP_RX_SN, an example is given below. The PDCP reordering buffer status is presented in the figures below. In each figure, the upper part describes the situation after all the received RLC PDUs have been processed and the lower part describes the situation after the PDCP SDUs, if any, have been delivered to the upper layer. The numbers in the boxes are the PDCP sequence numbers. The colored boxes represent the received PDCP PDUs and the white boxes represent missing PDUs. The value of variable Reordering_PDCP_RX_SN is represented by indicating the PDU where the value refers to. If there is no Reordering_PDCP_RX_SN-box, the value of the variable Reordering_PDCP_RX_SN is not set or its value is irrelevant. The consequtive figures represent a continuous sequence of events.

[image: image1]
Figure 1. A gap is present after the reception due to longer delay in the other eNB, so the timer is started.

[image: image2]
Figure 2. The gaps that were present in Figure 1 have been filled, so the timer can be stopped and all data is delivered to the upper layer.
It is important to keep in mind that the sequence of events represented in Figures 1 and 2 is the normal way of operation, covering probably much more than 99 % of the cases. The other sequences of events below would occur rather infrequenly.

[image: image3]
Figure 3. PDU with SN=22 was lost in the X2 interface, so the resulting gap will not get filled in the subsequent figures. Normal measures are taken here due to the gap.

[image: image4]
Figure 4. Some more PDUs are received while waiting for SN=22. New gap with SN=28 is created due to the delay difference between the legs. No blocks can be delivered to the upper layer. The timer is already running, so it is not touched.

[image: image5]
Figure 5. Before the timer expires, some new data is received, the gap with SN=28 is filled, a new gap with SN=31 is created. When the timer expires, the PDUs up to Reordering_PDCP_RX_SN and all in-sequence PDUs after it are delivered to the upper layer. The timer is restarted due the remaining gap and variable Reordering_PDCP_RX_SN is set.
2.2
Reordering window
The simulation results in the study item report [1] suggest that the transmission delay difference between the MeNB and SeNB may sometimes be close to 150 ms with RLC AM. Occasionally, the difference may be clearly larger for various reasons. The most probable cause might be that there is temporary congestion in one of the eNBs and the grants and resource allocations are delayed due to other traffic. It is thus possible that the reordering timer needs to have a larger value than this in practice. On the other hand, it should have as short expiration time as possible to guarantee a short transmission delay and enable quick upper layer retransmissions (by the TCP/IP, for instance). Keeping this in mind, let’s use 150 ms as a working assumption for the analysis below.

The maximum PDCP reordering window size for RLC AM is 16384. If we assume that the PDCP SDU size is typically 1500 bytes, we can easily determine that the maximum amount of data that fits into the PDCP reordering buffer is 24.6 Mbytes. If we assume that this amount of data will get to the reordering buffer in 150 ms, the corresponding data rate would be 1.31 Gbit/s. This seems sufficient for a single bearer.

As a final remark, it can be said that the higher the data rates are, the less congestion there are in the eNB. There will also be less MAC HARQ and RLC ARQ retransmissions and thus the difference between the delays of the two transmission path will be smaller. Hence, the reordering buffer will contain much less data on the average when the data rates are higher. Hence, the calculations above are rather pessimistic than optimistic for the very high data rates.
Proposal 7: RAN2 should discuss whether the maximum practical data rates estimated above are sufficient for each bearer or whether PDCP SN range should be extended.
2.3
Configurability

The reason to have reordering in the PDCP comes from the fact that the data transmission delay through MAC HARQ and RLC ARQ is variable, so the PDCP PDUs may arrive out of sequence from the two RLC entities if the bearers are split. This also means that reordering is not needed on those bearers which are not split. Only the network can have knowledge about the RLC, MAC, and physical layer parameters and the characteristics of the network packet scheduler and grant policy. Consequently, the reordering function should be made configurable and the configuration must be separate for each logical channel.

Determining the optimal value of the PDCP reordering timer is not a trivial task. The primary target is that the timer should expire as fast as possible to quickly resolve the persistent gaps caused by X2 transmission errors and sending PDCP discards. On the other hand, the timer expiration should not be too fast, because it is not desirable to deliver data containting gaps that are of temporary nature, i.e. caused by different delays in the MAC HARQ and RLC ARQ. This is another reason for making it configurable by the network.

The range of the timer expiration time need not be higher than the expiration time of the PDCP discardTimer. It is clear that waiting longer than that does not make sense, because that would often result in delivering data that already has expired. The proper value for the t-Reordering would not be more than a few seconds even if the discardTimer were configured to infinity. Beyond these general guidelines, there is no strict dependency between these two timers and it is up to the network to determine their optimal values. The lower limit of the reordering timer value range is somewhere near the duration of a few HARQ retransmissions and the minimum X2 delay.
Proposal 8: The t-Reordering timer value should be configurable for each PDCP entity separately.
Proposal 9: The configurable range of the t-Reordering timer values should be from a few tens of milliseconds to a few seconds.
2.4
Retransmissions

If the difference in the transmission delays via MeNB and SeNB are extremely large, it sometimes may happen that the PDCP discards a packet. In principle, it would be possible to have a retransmission protocol in the PDCP. A light retransmission protocol has actually been specified for the PDCP and is used in the re-establishment procedures. However, we do not consider it a viable approach. The need to have an ARQ in the PDCP is rather small, because there will be an upper player protocol, such as TCP, above the PDCP. The end result would be almost the same as with some kind of PDCP ARQ. Introducing an ARQ in PDCP would also require that the PDUs are not deleted in the transmitting PDCP when the RLC acknowledges them as delivered over the air interface. Hence, retransmissions in the PDCP should not be supported in the normal operation of dual connection. Naturally, this does not prevent using the PDCP retransmissions when re-establisment is requested by the RRC.
Proposal 10: The retransmission procedures specified for the PDCP re-establishment procedures are not used in the normal dual connection user plane operation.
2.5
Handover processing

It does not matter whether the handover is from a MeNB to MeNB or SeNB to SeNB, the contents of the RLC reordering buffer are forwarded to the PDCP in the re-establishment procedure and usually gaps in the PDCP SN sequence will be created. The PDCP status report will be sent to the peer PDCP to eventually fill these gaps by PDCP retransmissions.

The time required for filling the gaps caused by the handover is typically longer than the duration of the temporary gaps caused by the dual connection. If the t-Reordering timer is optimized for fast operation, the t-Reordering may often expire before the gaps are filled, so it is necessary suppress the timer based reordering during the re-establisment procedure. To accomplish that, the t-Reordering timer needs to be stopped if it was running when the PDCP PDUs are received due to the re-establishment procedure and the t-Reordering shall not be started before the PDCP starts receiving PDCP PDUs related to the PDCP retransmission.
In a typical case, there are not many PDCP PDUs that remain undelivered when the RLC buffer is forwarded to the PDCP, but there may be much more that have not been acknowledged to the transmitting peer PDCP entity. Therefore, the peer PDCP often starts sending PDCP PDUs that fall outside the receiving PDCP reordering window and they will thus be discarded by the receiving PDCP. These PDUs should not trigger the resumption of the t-Reordering timer based reordering operation. The timer based reordering should start only after the PDCP PDUs start falling inside the reordering window. Fortunately, the existing PDCP procedure at this point is formulated so that this is easy to accomplish (see the text proposal in the appendix).
Proposal 11: The timer t-Reordering shall be stopped when PDCP PDUs are received due to the re-establishment of lower layer.

Proposal 12: The reodering timer t-Reordering shall not be started before a PDCP PDU inside the reordering window is received after the re-establishment.
2.6
Ending bearer splitting

When the bearer splitting is ended and the conventional single connection is resumed, it is expected that the contents of the RLC buffers are also forwarded to the PDCP when one of the RLC entities associated to the split bearer is closed. PDCP PDUs may be lost in this process in very much the same way as in the handover. Therefore, the simplest way to handle the end of the splitting is to run the re-establisment procedure. This keeps the reordering active for a short while after the dual connection has been closed. The PDCP status reports will be triggered automatically according to the existing re-establishment procdures, so any incomplete data transmissions are then completed.
Proposal 13: The re-establishment procedure is run when the bearer splitting is ended.

3
Conclusion
To enable efficient userplane operation in architecture 3C we propose following functionality to be added to PDCP. Detailed work could then continue based on these in Stage-3 CR preparation for PDCP. A text proposal is given in the appendix to make this work easier.
Proposal 1: Start the timer t-Reordering when a gap in the PDCP PDU sequence is present after all RLC PDUs received within the same TTI have been processed if the timer is not already running.

Proposal 2: When the reordering timer is started, mark the last PDU in the reordering buffer with a variable Reordering_PDCP_RX_SN.

Proposal 3: When the reordering timer expires, flush the reordering buffer up to the variable Reordering_PDCP_RX_SN and any in-sequence PDUs thereafter.

Proposal 4: The timer t-Reordering is stopped when variable Reordering_PDCP_RX_SN gets outside the reordering buffer when the timer t-Reordering is running.

Proposal 5: The reordering timer is restarted and the variable Reordering_PDCP_RX_SN is set to the last PDU in the buffer if the flush did not empty the buffer.
Proposal 6: The reordering timer is stopped if the buffer becomes empty.

Proposal 7: RAN2 should discuss whether the maximum practical data rates estimated above are sufficient for each bearer or whether PDCP SN range should be extended.
Proposal 8: The t-Reordering timer value should be configurable for each PDCP entity separately.
Proposal 9: The configurable range of the t-Reordering timer values should be from a few tens of milliseconds to a few seconds.
Proposal 10: The retransmission procedures specified for the PDCP re-establishment procedures are not used in the normal dual connection user plane operation.
Proposal 11: The timer t-Reordering shall be stopped when PDCP PDUs are received due to the re-establishment of lower layer.

Proposal 12: The timer t-Reordering shall not be started before a PDCP PDU inside the reordering window is received after the re-establishment.
Proposal 13: The re-establishment procedure is run when the bearer splitting is ended.

4
References
[1] TS 36.842 Study on small cell enhancements for E-UTRA and E-UTRAN – Higher layer aspects, version 12.0.0
[2] TS 36.323 Packet Data Convergence Protocol (PDCP) specification, version 11.2.0

[3] R2-140115 Discussion on PDCP reordering issue for small cell, ZTE Corporation
[4] R2-140407 Assumptions to base reordering at PDCP, NSN, Nokia Corporation
[5] R2-140661 PDCP reordering for split bearers, Ericsson
[6] R2-140355 PDCP re-ordering with split bearers, Broadcom Corporation
A1
Text Proposal to TS 36.323
The first few lines of the reordering procedure for split bearers are the same as the reordering procedure for the re-establishment, so the same lines are not duplicated in the text proposal below. Naturally, these two procedures can easily be separated for the sake of clarity if the proposal below is considered confusing.
……..
5.1.2.1.2
Procedures for DRBs mapped on RLC AM
For DRBs mapped on RLC AM, at reception of a PDCP Data PDU from lower layers, the UE shall:
-
if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP SDU;

-
else if Next_PDCP_RX_SN – received PDCP SN > Reordering_Window:

-
increment RX_HFN by one;

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
use COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN >= Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
if Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
if the PDCP PDU has not been discarded in the above:
-
perform deciphering and header decompression (if configured) for the PDCP PDU as specified in the subclauses 5.6 and 5.5.5, respectively;
-
if a PDCP SDU with the same PDCP SN is stored:

-
discard this PDCP SDU;

-
else:

-
store the PDCP SDU;
-
if the PDCP PDU received by PDCP is not due to the re-establishment of lower layers and the bearer is not configures as a split bearer:

-
deliver to upper layers in ascending order of the associated COUNT value: 

-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value associated with the received PDCP SDU;

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;.
-
else if received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN:

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if the PDCP PDU received by the PDCP is due to the re-establishment of lower layers:


-
stop and reset t-Reordering;
-
if the bearer is configured as a split bearer:
-
if t-Reordering is running:
-
if Reordering_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 
0 <= Last_Submitted_PDCP_RX_SN - Reordering_PDCP_RX_SN < Reordering_Window:

-
stop and reset t-Reordering;
-
if t-Reordering is not running (including the case where it was stopped above):
-
if (Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or 
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN) and 
there are no more received PDCP PDUs available for immediate processing:
-
start t-Reordering;
-
set Reordering_PDCP_RX_SN to Next_PDCP_RX_SN – 1;
-
if Reordering_PDCP_RX_SN < 0:

-
set Reordering_PDCP_RX_SN to Maximum_PDCP_SN;
When the t-Reordering expires, the UE shall:

-
deliver to upper layers in ascending order of the associated COUNT value: 

-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value associated to Reordering_PDCP_RX_SN;
-
all possibly stored PDCP SDU(s) with consecutive associated COUNT value(s) starting from the COUNT value associated to Reordering_PDCP_RX_SN;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or 
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN:
-
start t-Reordering;
-
set Reordering_PDCP_RX_SN to Next_PDCP_RX_SN – 1;

-
if Reordering_PDCP_RX_SN < 0:

-
set Reordering_PDCP_RX_SN to Maximum_PDCP_SN;
……..

7.1
State variables
This sub clause describes the state variables used in PDCP entities in order to specify the PDCP protocol.
All state variables are non-negative integers.
The transmitting side of each PDCP entity shall maintain the following state variables:

a)
Next_PDCP_TX_SN

The variable Next_PDCP_TX_SN indicates the PDCP SN of the next PDCP SDU for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_TX_SN to 0.

b)
TX_HFN

The variable TX_HFN indicates the HFN value for the generation of the COUNT value used for PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set TX_HFN to 0.

The receiving side of each PDCP entity shall maintain the following state variables:

c)
Next_PDCP_RX_SN

The variable Next_PDCP_RX_SN indicates the next expected PDCP SN by the receiver for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_RX_SN to 0.

d)
RX_HFN

The variable RX_HFN indicates the HFN value for the generation of the COUNT value used for the received PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set RX_HFN to 0.

e) Last_Submitted_PDCP_RX_SN

For PDCP entities for DRBs mapped on RLC AM the variable Last_Submitted_PDCP_RX_SN indicates the SN of the last PDCP SDU delivered to the upper layers. At establishment of the PDCP entity, the UE shall set Last_Submitted_PDCP_RX_SN to Maximum_PDCP_SN.
f) Reordering_PDCP_RX_SN

This variable is used to mark the last PDCP PDU in the reordering buffer when the timer t-Reordering is started.
7.2
Timers

The transmitting side of each PDCP entity for DRBs shall maintain the following timers:

a) discardTimer
The duration of the timer is configured by upper layers [3]. In the transmitter, a new timer is started upon reception of an SDU from upper layer.

b) t-Reordering
The duration of the timer is configured by upper layers [3]. The timer is used with dual connection to control the reordering of the received PDCP PDUs on split bearers.
After PDU reception



After delivery to upper layer



Reordering_PDCP_RX_SN



7



8



9











12



13



14











12



13



14



Start t-Reordering











After PDU reception



After delivery to upper layer



10



11



12



13



14



15



16











Stop t-Reordering



Reordering_PDCP_RX_SN



After PDU reception



After delivery to upper layer



17



18



19



20



21







23



24



25



26











23



24



25



26







Start t-Reordering



Reordering_PDCP_RX_SN



After PDU reception



After delivery to upper layer







23



24



25



26



27







29



30







t-Reordering running







23



24



25



26



27







29



30







Reordering_PDCP_RX_SN



Reordering_PDCP_RX_SN



After PDU reception



After delivery to upper layer







23



24



25



26



27



28



29



30







32







32







Restart t-Reordering



t-Reordering expires







Reordering_PDCP_RX_SN



Reordering_PDCP_RX_SN





