Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #83bis
R2-133672
Ljubljana, Slovenia, 7th – 11th October 2013
Agenda Item:
10.1.3
Source:
Qualcomm
Title:
Remaining text proposal for UL data compression
Document for:
Discussion, Decision
1
Introduction

During RAN2#83 the following email discussion was assigned
[83#15][UMTS/FEUL] Capture agreements (Ericsson)

-
Review and agree on a TP capturing the agreements and solutions for all the topics addressed in RAN2#83

-
Intended outcome: TP to TR 25.700

At the conclusion of email discussion [83#15], there are some remaining sections in the Technical Report (TR) for UL data compression that need to be completed. The purpose of this document is to propose a TP on those remaining sections to be incorporated in the TR. The TP herein is based on the final draft TR circulated on [83#15].
2
Text Proposal
[-- TEXT START---]
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP RP-122019, "Study on Further EUL Enhancements".
[3]
IETF RFC 2616, “Hypertext Transfer Protocol -- HTTP/1.1”

[4]
IETF RFC 2507, “IP Header Compression”

[5]
IETF RFC 4996, “RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)”

[6]
3GPP Tdoc R1-131558, “Further Considerations for HSUPA Rate Adaptation”, Ericsson, ST-Ericsson

[7]
3GPP Tdoc R1-122580, “SINR-based scheduling for UL MIMO”, Nokia Siemens Networks.

[8]
3GPP Tdoc R1-122581, “Simulation results for SINR-based scheduling for UL MIMO”, Nokia Siemens Networks

[9]
3GPP Tdoc R1-122582, “SINR-Based scheduling for SIMO and CLTD transmission modes”, Nokia Siemens Networks

[10]
3GPP Tdoc R1-131609, “Initial simulation results for SINR-based scheduling and TDM in HSUPA”, Nokia Siemens Networks

[11]
3GPP Tdoc R1-130674, “Initial simulation results for SINR-based scheduling in HSUPA”, Nokia Siemens Networks

[12]
3GPP Tdoc R1-132612, "Further Details on HSUPA Rate Adaptation", Ericsson, ST-Ericsson

[13]
3GPP Tdoc R1-132613, "Initial Link Simulation Results for HSUPA Rate Adaptation", Ericsson, ST-Ericsson
[14]
IETF RFC 1951, “DEFLATE Compressed Data Format Specification version 1.3”
[15]
IETF RFC 1952, “GZIP file format specification version 4.3”
[-- NEXT CHANGE--]
5.2
UL data compression

5.2.1
Background and motivation

HTTP [3] is the protocol used for retrieving webpages. A visit to a webpage typically consists of the web browser sending multiple, tens of HTTP GET/POST requests. Each GET request is made to obtain an object such as an HTML document, image, video, javascript or CSS file. These objects constitute various aspects of the website, and are processed by the browser to display the final webpage.

The following is a GET request made during a visit to www.amazon.com:

GET / HTTP/1.1

Host: www.amazon.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:17.0) Gecko/20100101 Firefox/17.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cookie: x-wl-uid=1nm5D3WRA2mfidzfIEB+fgNN3svOpy/jEBIHq+h8CEk1kt1Cc2DgpNSAnsFxLQwL5hgfY+3MipSY=; session-id-time=2082787201l; session-id=184-2472291-4052047; csm-hit=535.90|; ubid-main=183-3799177-9039917; session-token=N9MiwGi+ROWIfFDs0xTrsA51G5cgeauxP0guon1LbsyU6THBQWb7XrrnNAR9wH6whoEYhZHJq5wRt8CTvuMl+eyIEVmpA3heAV8ijMKMW2mn7S29jSZhknM9/iOsuq0AH1FO63UFXvvbDEf9n6z1taIQ9lNHwpkbaKwWmwTx20hF68aX7ac/qYxHVzWfbMloQx0S1lfHKqVpIqAdZX6eX5MsbEp8haGEfK+FI5p6EczKicv1iYtf9PRTcLdDd4QO8ZWmzp+sudM=

Cache-Control: max-age=0
This GET is requesting the main HTML document for www.amazon.com. The request consists of various HTTP headers such as Host, User-Agent, Accept, Accept-Language, Cookie and others. Some of these HTTP headers, such as User-Agent, Accept-Language and Accept-Encoding would not change over time; and hence carry the same value in subsequent GET requests. The Cookie header, which is often the longest, is used by servers to identify the user over time and hence it is not uncommon for it to appear with the same value across several GET requests. The Host header identifies the location from which an object is requested, and this may also stay the same across GET requests for sites that host all or a majority of objects in one place.

It is expected that when comparing the stream of GET requests made in the course of downloading a webpage, there is significant redundancy across the GET packets. There are several other HTTP request methods, such as PUT and HEAD which also exhibit a similar behaviour since they follow the same format for HTTP headers.

By performing UL data compression, the number of bits needed to be sent over the air in order to convey the same amount of information is reduced. This results in a more efficient use of cellular resources by either increasing the application data rate or reducing the Rise-over-Thermal for the system.

Another possible advantage of compression is that it may enable more of the packets to be transmitted in the Cell FACH state, since the traffic volume threshold for transition to Cell DCH will be exceeded less often. The system benefits of this are reduced time holding dedicated resources in Cell DCH state resulting in reduced Rise-over-Thermal and reduced signalling load due to fewer RRC state transitions. User benefit of this is increased battery lifetime due to less time spent in the power demanding DCH state.

5.2.2
Analysis

Current mechanisms for compression include the header compression algorithms IPHC and RoHC. These algorithms operate on the TCP, UDP, IP headers of data packets. The payload of these data packets is left untouched by these algorithms; hence they cannot be used for compressing the HTTP requests.

IPHC [4] and RoHC [5] are well-studied mechanisms used to compress the TCP/IP headers of data packets. Generally, header compression may provide a compression factor of 5x (i.e. TCP/IP header is reduced by a factor of 5).

Table 2 shows the compression performance of header compression (assuming a 5X compression of the TCP/IP headers) on tcpdump logs collected for mobile devices within a corporate network during lunch time. It was ensured that only traffic going to and coming from the internet was collected. The logs consist of 30 minutes of TCP/IP packets collected from 813 devices.
Table 5.2.2-1:
Compression statistic computed over entire IP packets on the uplink
	Scenario
	Factor Reduction in Data Transmission for UL

(Avg_UL_packet_size_original/ Avg_UL_packet_size_compressed)

	Header Compression
	1.9

5.2.3
Solutions

Editor’s Note: It was agreed that the UL data compression solution described in R2-132449 is a potential solution

5.2.3.1
Description of solution
5.2.3.1.1
RAN-level compression

Figure 5.2.3.1.1-1 shows the architecture for a RAN-level compression solution. The transmission entity compresses a SDU received from upper layers (e.g. IP) to create a PDU. The receiver entity performs the reverse function to re-create the original SDU from the PDU it has received.

Here, compression is performed only on the payload of the TCP, UDP, IPv4/v6 packets. Hence, the compression and decompression layers need to parse the TCP, UDP and IPv4/v6 headers to identify the start and end of the payload.

[image: image1.emf]Upper Layers

Compression Tx Entity

Header Compression

Lower Layers

(RLC/ MAC / PHY)

SDU

PDU

UE

UE

Upper Layers

Compression Rx Entity

Header Decompression

Lower Layers

(RLC/ MAC / PHY)

SDU

PDU

NodeB / RNC

NodeB / RNC

Figure 5.2.3.1.1-1: Architecture

5.2.3.1.1.1
Bytes to be (de-)compressed by RAN-level compression
There are well defined standards that perform the function of compressing UDP/TCP/IPv4/IPv6 headers. Hence, the approach taken is to extract the payload part of the data packet and to perform data compression on it alone. The various cases are illustrated below.

TCP/UDP-over-IP packet: The payload of the TCP/UDP packet is compressed/de-compressed.

[image: image2.emf]IP header TCP/UDP header Bytes to be (de-)compressed

Non-TCP/UDP-over-IP packet: The payload of the IP packet is compressed/de-compressed.

[image: image3.emf]Bytes to be (de-)compressed IP header

Non-IP packet: These packets are not processed. i.e., they pass through compression without any modifications.

5.2.3.1.1.2
Operations on TCP, UDP and IP headers

The RAN-level compression transmitting and receiving entities may change the payload of IP, TCP and UDP packets. This could cause the length and checksum fields in these headers to be incorrect, and hence they need to be updated.

5.2.3.1.1.3
Details of RAN-level compression methods
5.2.3.1.1.3.1
Existing compression methods
5.2.3.1.1.3.1.1
Gzip
Gzip is a popular tool used for compressing data. The format of the file generated by Gzip is provided in [15]. It, in turn, uses the DEFLATE compressed data format specified in [14]. The DEFLATE data format supports compression of data by two mechanisms. One mechanism, which can be thought of as pattern-matching, is by identifying repeated string of bytes in data and replacing such occurrences with pointers to previous instances. The other mechanism is entropy coding of symbols using Huffman algorithm. It is worth noting that the DEFLATE format limits the pattern-match, to point to instances at most 32K bytes in the past and match length to be of at most 258 bytes. When applied to data packets, the algorithm faces the limitation that the pattern-match pointers can only point to instances within the packet. Due to this it fails to make use of redundancy across packets.

5.2.3.1.1.3.2
IPDC
In this section we describe the details of one particular instantiation of a RAN-level compression algorithm, namely IPDC.

The proposed algorithm is similar to Gzip and DEFLATE [14]. It uses the key ideas of pattern-matching (LZ77 algorithm) and entropy coding (Huffman). The main difference when compared to Gzip/DEFLATE is that the algorithm maintains a fixed amount of memory at the compressor and de-compressor so that it may keep track of the contents of past data packets. This memory enables the pattern-matching algorithm to reference instances of repeat bytes across packets.

5.2.3.1.1.3.2.1
IPDC Tx Entity

This section describes how the transmission entity compresses the input bytes.

As the Tx Entity reads the input bytes, it tries to locate strings of bytes that have already occurred at a previous location in the input, or at some location in memory. If no match is found, bytes are written to an Intermediate_Code_Representation array as literal codes, (i.e. decimal value of the bytes is captured). If a match is found, a length code and distance code are inserted in the Intermediate_Code_Representation. Tables provided in section 3.2.5 of [14] are used to determine the codes to be inserted for a particular length value and distance value.

Note that since the literal codes span 0 to 255, and length codes span 257 to 285, they can be thought of as representing one code space. Since the distance code occurs only after a length code, the distance codes can be considered as representing another independent code space. Next, dynamic Huffman encoding is performed on each of these code spaces (i.e. the literal+length space, and the distance space). The encoding provides the bitstrings to be used to represent each code in each of the two code spaces. Using this, Intermediate_Code_Representation is converted to Intermediate_Bitstring_Representation. Note that since several length values were represented by a single code and similarly several distance values were represented by a single code, extra bits (as captured in the tables provided in section 3.2.5 of [14]) are inserted to identify which value is actually intended.

Finally, the Huffman tree is encoded as described in section 3.2.7 of [14] to obtain an Encoded_Huffman_Tree. The final output consists of a concatenation of the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation.

The uncompressed version of the input bytes is pushed into the memory in FIFO fashion. This is done so that the data from the latest packet that is processed, is captured in memory.

[image: image4.emf]Tx Entity

Input Bytes

Intermediate_Code_Representation

Intermediate_Bitstring_Representation

Huffman_Tree

LZ77 pattern matching

Huffman Coding

Huffman Coding

Output Bytes

Memory

Updated Memory

Encoded_Huffman_Tree

Figure 5.2.3.1.1.3.2.1-1: IPDC Tx Entity compression operation. After compression, a copy of the input bytes is pushed into memory in FIFO fashion
Example: Tx Entity Compression Operation

Figure 5.2.3.1.1.3.2.1-3 shows the intermediate steps in the compression operation using input bytes set to ‘0102030A0B0C0D’ in hex, and initial memory set to ‘0A0B0C0D’ in hex. As shown in Figure 5.2.3.1.1.3.2.1-2, since the string ‘0A0B0C0D’ is available in memory, it can be replaced by a length, distance value of 4, 7. The length value of 4 maps to a code of 258. The distance value of 7 maps to a code of 5 and carries an extra bit ‘0’. Hence, in the Intermediate_code_representation, we have the following codes 1) length+literal: 1, 2, 3, 258 and 2) distance: 5. Separate Huffman trees are generated for these code spaces (as shown in Figure 5.2.3.1.1.3.2.1-3). The Intermediate_bitstring_representation is derived using the Intermediate_code_representation and the Huffman trees generated. The Huffman tree is encoded as described in section 3.2.7 of [14] to obtain Encoded_Huffman_Tree. The final output consists of a concatenation of the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation

[image: image5.emf]0A0B0C0D

0102030A0B0C0D

Initial Memory

Input Bytes

String ‘0A0B0C0D’ can be found if we move back by 7 bytes. Hence, it can be

replaced by length, distance value of 4,7

Figure 5.2.3.1.1.3.2.1-2: Referencing matching string

[image: image6.emf]0A0B0C0D 0102030A0B0C0D

1,2,3,258,5(extra-bit = 0)

0001101100

Huffman Tree for Literal+Length

1 -> 00

2 -> 01

3 -> 10

258 -> 11

Huffman Tree for Distance

5 -> 0

0A0B0C0D0102030A0B0C0D

Initial Memory (in hex)

Memory After Compression (in hex)

Input Bytes (in hex)

Intermediate_Bitstring_Representation

Intermediate_Code_Representation

Output Bytes

Encoded_Huffman_Tree

Figure 5.2.3.1.1.3.2.1-3: Example compression operation

5.2.3.1.1.3.2.2

IPDC Rx Entity

In this section, we describe how the receiving entity decompresses the input bytes.

The input is parsed to obtain the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation. The Huffman tree is obtained by decoding the Encoded_Huffman_Tree, and is used to convert the Intermediate_Bitstring_Representation in to Intermediate_Code_Representation. The Intermediate_Code_Representation is parsed to provide an output byte stream in the following way: If the code represents a literal byte (i.e. the code is in the range of 0 to 255), the byte is output as is. If the code encountered represents a length code, the subsequent code is parsed as well since it represents the corresponding distance code. The length and distance value obtained is used to identify the string of bytes which need to be copied over. Depending on the distance value, they may refer to a previous location in the output stream, or to a location in memory.

The final output, which represents uncompressed data, is pushed into the memory in FIFO fashion. This is done so that the data from the latest packet that is processed, is captured in memory.

[image: image7.emf]Rx Entity

Output Bytes

Intermediate_Code_Representation

Intermediate_Bitstring_Representation

Huffman_Tree

LZ77 pattern dereference

Huffman Decoding

Used in Huffman Decoding

Input Bytes

Updated Memory

Memory

Encoded_Huffman_Tree

Figure 5.2.3.1.1.3.2.2-1: IPDC Rx Entity decompression operation. After decompression, a copy of the final output bytes is pushed into the memory in FIFO fashion.

5.2.3.2
Evaluation of solution

5.2.3.2.1
General aspects of RAN-level compression
The compression of data will be carried out at the UE. The following nodes are candidates for the placement of the decompression entity: SGSN/GGSN, RNC, NodeB. Any compression mechanism that is supported should operate over the RLC layer so that the compression mechanism can avoid dealing with sequence errors and re-transmission issues. Hence the UE – NodeB approach should be ruled out. If the UE – SGSN/GGSN approach is adopted, middle-boxes that look in to packet payload , such as proxy caches, deployed at the RNC will not be able to function properly since they will encounter compressed packets. This approach also means that the computational resource requirement, for decompression, will be much higher since a lot more data passes through the SGSN/GGSN than the RNC.

It should be noted that compressing ciphered data or certain pre-compressed data such as image/video/audio is not expected to provide much gains. If the payload data is ciphered or pre-compressed, the compression gain will come only from compressing IP/UDP/TCP/HTTP headers. In this case, the overall performance might be similar or even worse when compared to if no compression was applied. This motivates a need to provide a mechanism within the RAN to signal whether compression has been applied per packet.

Another aspect of RAN level data compression is that it can address either the whole packet, or TCP/UDP headers with the remaining payload, or the TCP/UDP payload, but not specifically the HTTP headers. Thus, a RAN level compression scheme would not be able to compress only the HTTP headers for flows carrying, for example, ciphered data or pre-compressed data (eg. image/video/audio).
5.2.3.2.2
Evaluation of compression algorithms
The various algorithms described above were run on tcpdump logs collected for mobile devices within a corporate network. It was ensured that only traffic going to and coming from the internet was collected. The logs consist of 30 mins of TCP/IP packets collected from 813 devices.

Table 5.2.3.2.2-1 compares compression statistics for the payload part of TCP/IP packets between Gzip and IPDC.

The metric ‘Factor Reduction in Data Transmission’ is defined as the ratio of the amount of data prior to compression, to the amount of data post compression.
Table 5.2.3.2.2-1: Compression statistics for the payload part of TCP/IP packets
	Scenario
	Factor Reduction in Data Transmission for UL Payload only

(Avg_UL_payload_size_original / Avg_UL_payload_size_compressed)

	IPDC
	6.8

	Gzip
	1.4

The above statistics indicate that UL data compression that takes advantage of redundancy across packets (IPDC) performs significantly better than per-packet compression (gzip).

Table 5.2.3.2.2-2 lists the compression statistics computed over entire IP packets on the uplink. Here, one can see that header compression alone can provide up to 1.9X reduction of net data transmission on UL (assuming a 5X compression of the TCP/IP headers). This is because about 59% of the bytes on uplink, in the analyzed logs, are from TCP/IP headers.
Table 5.2.3.2.2-2: Compression statistics computed over entire IP packets on the uplink
	Scenario
	Factor Reduction in Data Transmission for UL
(Avg_UL_packet_size_original / Avg_UL_packet_size_compressed)

	IPDC w Header Compression
	5.6

	Gzip w Header Compression
	2.4

	Header Compression
	1.9

The compression statistics computed over entire IP packets, for the case where header compression is disabled are shown next.
Table 5.2.3.2.2-3: Compression statistics computed over entire IP packets on the uplink, for the case where header compression is disabled
	Scenario
	Factor Reduction in Data Transmission for UL
(Avg_UL_packet_size_original / Avg_UL_packet_size_compressed)

	IPDC w/o Header Compression
	1.5

	Gzip w/o Header Compression
	1.1

Comparing the gains with and without header compression, one can notice a significant difference. This provides the motivation for enabling header compression in addition to data compression of the payload. Note that since web browsing is carried in RLC AM mode, we do not encounter robustness issues related to IPHC or ROHC as encountered in the case of UM (VoIP)

Table 5.2.3.2.2-4 shows some further statistics for IPDC, collected by visiting individual websites:
Table 5.2.3.2.2-4: Compression statistics for the proposed algorithm
	Scenario
	Factor Reduction in Data Transmission for UL Payload only
(Avg_UL_payload_size_original / Avg_UL_payload_size_compressed)

	Browsing to NYTimes.com
	5.9

	Browsing to PBS.org
	6.7

	Browsing to Whitehouse.gov
	4.8

	Browsing to Akamai.com
	5.6

	Browsing to Amazon.com
	4.2

5.2.4
Conclusions

Editor’s Note: Overall conclusions for the identified solutions should be captured here.

[-- TEXT END ---]
3
Conclusion

It is proposed to agree on the inclusion of the text proposal on UL data compression presented in this contribution in the Further EUL Enhancements Technical Report [1].

4
References

[1] TR25.700, “Study on Further EUL enhancements”

7/9

_1441531843.vsd
Upper Layers

Compression Tx Entity

Header Compression

Lower Layers
(RLC/ MAC / PHY)

SDU

PDU

UE

Upper Layers

Compression Rx Entity

Header Decompression

Lower Layers
(RLC/ MAC / PHY)

SDU

PDU

NodeB / RNC

