3GPP TSG-RAN WG2 Meeting #83bis
R2-133389

Ljubljana, Slovenia, 7 - 11 October 2013

Agenda item:

10.1.3

Source:
NSN

Title:
Further considerations on the UL data compression

Document for:

Discussion

1
Introduction

In RAN#58, a new SI was started that aims at further UL enhancements for increasing uplink capacity, coverage and end user performance. One of the identified study areas is the UL data compression between the UE and the RAN. During the RAN2 meetings #82 and #83, a few contributions were made, which however focused more on one particular method of compressing data [2].

In this paper we present some general considerations with regards to the architectural and functional aspects of the RAN level data compression.

2
RAN level data compression

For the sake of simplicity and tractability, we divide further our considerations into several areas, where we present and explains some technical concerns and challenges that we can meet if we deploy the data compression between a UE and RAN.

2.1
Compression of ciphered data

One of the fundamental issues is the fact that it is not efficient to apply compression to the data that was previously ciphered. Both ciphering and compression rely heavily upon information theory concepts, such as statistical inference, identifying and eliminating repetitive information. Thus, once ciphering is applied to some data set, subsequent compression will not bring gains. It puts certain architectural limitations on where the data compression can and/or should be performed. Referring to the scope of this SI, the question is whether we should consider compression at the RAN level as considered in [1], or should it be left in charge of higher layers.

It has been observed that more and more applications in the Internet domain use ciphering to protect personal and business critical information, ranging from complex commercial systems to the every day life chat applications. As a very simple example, the following widely used applications already now rely upon the HTTPS protocol: Facebook, WhatsApp, etc. At the same time, it is worth noting that there are and there always will be applications and services where ciphering is not applied.

Since the lower PDCP/RLC layers are effectively unaware of what kind of information is passed from applications, always-on compression may lead to worse performance. Referring to the example with the chat-like applications, the protocol overhead is quite noticeable when compared to the actual payload size, so compressing the whole packet can indeed result in noticeable gains. However, as the payload data can be ciphered, the overall compression gain will come only from compressing IP/UDP/TCP/HTTP headers. In this case, the overall performance might be similar or even worse when compared to already existing header compression techniques, such as RoHC.

2.2
Compression of headers versus headers and data

Another architectural and functional aspect behind the RAN level data compression is whether it should cater only for headers, for instance addressing redundancy in the HTTP protocol headers, or data, or both headers and data. A solution working at the RAN level can address only a case of compressing the whole packet, i.e., when both headers and data are compressed, or a subset of headers with the remaining payload information. It is worth mentioning that compressing only the transport layers headers, such as IP/TCP or IP/UDP/RTP, is already feasible with RoHC. However, if we tackle a problem of compressing the HTTP headers, then a UE will have to analyse the packet to understand its type and identify the starting and ending positions of the corresponding headers. In other words, the RAN level compression can address either the whole packet, or TCP/UDP headers with the remaining payload, or the TCP/UDP payload, but not specifically the HTTP headers.

If the whole packet is compressed at the RAN level, then as also mentioned earlier, it can bring noticeable gains for small packets such as chat messages carrying the textual data. On the other hand, it is already the case that certain applications pre-compress payload information, such as iMessage chat application. Some applications, such as WhatsApp and Facebook, apply the lossy compression to reduce the size of uploaded images as much as possible. Generally speaking, compression of any payload information containing some media information, such as image/video/audio information, will not bring noticeable gains.

It is also worth noting so-called mobile proxy web browsing which has been becoming widely available to the mobile platforms. In a few words, a mobile phone communicates via some proxy, whereupon the data between the mobile phone and proxy is compressed. Such an approach is already adopted for a number of mobile platforms. In particular, it is known as Data Sense for Windows based mobile devices, Nokia Xpress for some Nokia plaforms, SPDY for the Android based devices, which is also available for iPhone and iPad devices through the Google Chrome browser. Most of the aforementioned services do not only decide on fly whether to compress header and/or payload, but also use to transcode media information further decreasing amount of information. The latter aspect cannot be addressed at all by the RAN level compression.

As a general summary, when compared to the RAN level compression, higher layer data compression catering for e.g. IP or HTTP headers might have higher efficiency as they will not touch the payload data, which can be already compressed/ciphered or contain the media information, which is also compressed to some extent. Furthermore, higher layer approach is more flexible in a sense that it can be decided, even on fly, whether only headers are compressed or both headers and data.

2.3 Computational load caused by compression

There is an important aspect of computational load caused by data compression, which so far has not been addressed properly. As the compression does not come for free in terms of computational resources, there should be an analysis on “pain versus gain” with regards to the requirements for more powerful application level processors or dedicated DSPs, and as a result shorter battery life. As an example, referring to the HTTP header compression performance benchmarks presented in [3], one can notice that compression/decompression process takes quite a noticeable fraction of time even on the desktop PCs.

In case of a solution working at the RAN level, that may result in a UE failing to sending data in every 2 or 10ms TTI, thus reducing the achievable throughput.

3
Conclusion

In this paper, we have presented our further considerations regarding the RAN level compression. In particular, we have listed some pros and cons behind this approach, especially if the application level services use to cipher information and/or if that information undergoes some form of compression as decided by the application level developers.

Proposal: Add the presented considerations to the TR.

The text proposal can be found in the section below.

References

[1] R2-130988, “On Uplink Data Compression”, Qualcomm Incorporated

[2] R2-132449, “Further details of method for UL data compression”, Qualcomm Incorporated

[3] Christian Grothoff, “A Benchmark for HTTP 2.0 Header Compression”, URL: https://gnunet.org/httpbenchmark/
Input for TR

One of the fundamental issues is the fact that it is not efficient to apply compression to the data that was previously ciphered. Thus, once ciphering is applied to some data set, subsequent compression will not bring gains. Since the lower PDCP/RLC layers are effectively unaware of what kind of information is passed from applications, always-on compression may lead to worse performance. Referring as an example to the chat-like applications, the protocol overhead is quite noticeable when compared to the actual payload size, so compressing the whole packet can indeed result in noticeable gains. However, as the payload data can be ciphered, the overall compression gain will come only from compressing IP/UDP/TCP/HTTP headers. In this case, the overall performance might be similar or even worse when compared to already existing header compression techniques, such as RoHC.

It is also a common case that certain applications pre-compress payload information if it is known that it will be a textual data, sometimes even applying the lossy compression to reduce the size of uploaded images as much as possible. It is also worth noting so-called mobile proxy web browsing which has been becoming widely available to the mobile platforms. A mobile phone communicates via some proxy, whereupon the data between the mobile phone and proxy is compressed. Furthermore, the proxy does not only decide on fly whether to compress header and/or payload, but also use to transcode media information further decreasing amount of information. The latter aspect cannot be addressed by the RAN level compression. Generally speaking, compression of any payload information containing some media information, such as image/video/audio information, will not bring noticeable gains.

Another architectural and functional aspect behind the RAN level data compression is whether it should cater only for headers, for instance addressing redundancy in the HTTP protocol headers, or data, or both headers and data. A solution working at the RAN level can address only a case of compressing the whole packet, i.e., when both headers and data are compressed, or a subset of headers with the remaining payload information. If RAN level compression aims specifically at the HTTP headers, then a UE will have to analyse the packet to understand its type and identify the starting and ending positions of the varying HTTP header. In other words, the RAN level compression can address either the whole packet, or TCP/UDP headers with the remaining payload, or the TCP/UDP payload, but not specifically the HTTP headers.

