Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG RAN WG2 #83
R2-132449
Barcelona, Spain, 19-23 Aug 2013
Agenda item:
10.1.3
Source:
QUALCOMM Incorporated

Title:
Further details of method for UL data compression
Document for:
Discussion

1
Introduction

In RAN#58, a new SI was begun to study further EUL enhancements [1] with the objective of identifying technical solutions for increasing uplink capacity, coverage and end user performance. One of the identified solutions is to perform UL data compression between the UE and the RAN. In [2], we discussed the motivation for, and benefits of doing so.
In this document, we describe in detail our proposed algorithm.
2
Discussion on Algorithm
In [2], we introduced the idea of compressing the uplink data between a UE and the RAN, and we showed that significant gain can be obtained by performing such compression for HTTP traffic. In this section we describe a compression algorithm that we have developed, which we will refer to as IPDC.
Figure 1 shows the architecture for IPDC. The transmission entity compresses a SDU received from upper layers (e.g. IP) to create a PDU. The receiver entity performs the reverse function to re-create the original SDU from the PDU it has received.

Compression is performed only on the payload of the TCP, UDP, IPv4/v6 packets. Hence, the compression and decompression layers need to parse the TCP, UDP and IPv4/v6 headers to identify the start and end of the payload.

[image: image1.emf]Upper Layers

IPDC Tx Entity

Header Compression

Lower Layers

(RLC/ MAC / PHY)

SDU

PDU

UE

UE

Upper Layers

IPDC Rx Entity

Header Decompression

Lower Layers

(RLC/ MAC / PHY)

SDU

PDU

NodeB / RNC

NodeB / RNC

Figure 1: Architecture

Bytes to be (de-)compressed by IPDC
There are well defined standards that perform the function of compressing UDP/TCP/IPv4/IPv6 headers. Hence, the approach taken is to extract the payload part of the data packet and to perform data compression on it alone. The various cases are illustrated below.

TCP/UDP-over-IP packet: The payload of the TCP/UDP packet is compressed/de-compressed.

[image: image2.emf]IP headerTCP/UDP headerBytes to be (de-)compressed

Non-TCP/UDP-over-IP packet: The payload of the IP packet is compressed/de-compressed.

[image: image3.emf]Bytes to be (de-)compressedIP header

Non-IP packet: These packets are not processed. i.e., they pass through IPDC without any modifications.

Operations on TCP, UDP and IP headers

The transmitting and receiving entities may change the payload of IP, TCP and UDP packets. This could cause the length and checksum fields in these headers to be incorrect, and hence they need to be updated.

IPDC Details

Our proposed algorithm is similar to Gzip and DEFLATE [3]. It uses the key ideas of pattern-matching (LZ77 algorithm) and entropy coding (Huffman). The main difference when compared to Gzip/DEFLATE is that the algorithm maintains a fixed amount of memory at the compressor and de-compressor so that it may keep track of the contents of past data packets. This memory enables the pattern-matching algorithm to reference instances of repeat bytes across packets.

IPDC Tx Entity
In this section we describe how the transmission entity compresses the input bytes.
As the Tx Entity reads the input bytes, it tries to locate strings of bytes that have already occurred at a previous location in the input, or at some location in memory. If no match is found, bytes are written to an Intermediate_Code_Representation array as literal codes, (i.e. decimal value of the bytes is captured). If a match is found, a length code and distance code are inserted in the Intermediate_Code_Representation. Tables provided in section 3.2.5 of [3] are used to determine the codes to be inserted for a particular length value and distance value.

Note that since the literal codes span 0 to 255, and length codes span 257 to 285, they can be thought of as representing one code space. Since the distance code occurs only after a length code, the distance codes can be considered as representing another independent code space. Next, dynamic Huffman encoding is performed on each of these code spaces (i.e. the literal+length space, and the distance space). The encoding provides the bitstrings to be used to represent each code in each of the two code spaces. Using this, Intermediate_Code_Representation is converted to Intermediate_Bitstring_Representation. Note that since several length values were represented by a single code and similarly several distance values were represented by a single code, extra bits (as captured in the tables provided in section 3.2.5 of [3]) are inserted to identify which value is actually intended.
Finally, the Huffman tree is encoded as described in section 3.2.7 of [3] to obtain an Encoded_Huffman_Tree. The final output consists of a concatenation of the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation.

The uncompressed version of the input bytes is pushed into the memory in FIFO fashion. This is done so that the data from the latest packet that is processed, is captured in memory.

[image: image4.emf]Tx Entity

Input Bytes

Intermediate_Code_Representation

Intermediate_Bitstring_Representation

Huffman_Tree

LZ77 pattern matching

Huffman Coding

Huffman Coding

Output Bytes

Memory

Updated Memory

Encoded_Huffman_Tree

Figure 2: IPDC Tx Entity compression operation. After compression, a copy of the input bytes is pushed into memory in FIFO fashion.
Example: Tx Entity Compression Operation

Figure 4 shows the intermediate steps in the compression operation using input bytes set to ‘0102030A0B0C0D’ in hex, and initial memory set to ‘0A0B0C0D’ in hex. As shown in Figure 3, since the string ‘0A0B0C0D’ is available in memory, it can be replaced by a length, distance value of 4, 7. The length value of 4 maps to a code of 258. The distance value of 7 maps to a code of 5 and carries an extra bit ‘0’. Hence, in the Intermediate_code_representation, we have the following codes 1) length+literal: 1, 2, 3, 258 and 2) distance: 5. Separate Huffman trees are generated for these code spaces (as shown in Figure 4). The Intermediate_bitstring_representation is derived using the Intermediate_code_representation and the Huffman trees generated. The Huffman tree is encoded as described in section 3.2.7 of [3] to obtain Encoded_Huffman_Tree. The final output consists of a concatenation of the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation

[image: image5.emf]0A0B0C0D

0102030A0B0C0D

Initial Memory

Input Bytes

String ‘0A0B0C0D’ can be found if we move back by 7 bytes. Hence, it can be

replaced by length, distance value of 4,7

Figure 3: Referencing matching string

[image: image6.emf]0A0B0C0D0102030A0B0C0D

1,2,3,258,5(extra-bit = 0)

0001101100

Huffman Tree for Literal+Length

1 -> 00

2 -> 01

3 -> 10

258 -> 11

Huffman Tree for Distance

5 -> 0

0A0B0C0D0102030A0B0C0D

Initial Memory (in hex)

Memory After Compression (in hex)

Input Bytes (in hex)

Intermediate_Bitstring_Representation

Intermediate_Code_Representation

Output Bytes

Encoded_Huffman_Tree

Figure 4: Example compression operation

IPDC Rx Entity

In this section, we describe how the receiving entity decompresses the input bytes.
The input is parsed to obtain the Encoded_Huffman_Tree and the Intermediate_Bitstring_Representation. The Huffman tree is obtained by decoding the Encoded_Huffman_Tree, and is used to convert the Intermediate_Bitstring_Representation in to Intermediate_Code_Representation. The Intermediate_Code_Representation is parsed to provide an output byte stream in the following way: If the code represents a literal byte (i.e. the code is in the range of 0 to 255), the byte is output as is. If the code encountered represents a length code, the subsequent code is parsed as well since it represents the corresponding distance code. The length and distance value obtained is used to identify the string of bytes which need to be copied over. Depending on the distance value, they may refer to a previous location in the output stream, or to a location in memory.
The final output, which represents uncompressed data, is pushed into the memory in FIFO fashion. This is done so that the data from the latest packet that is processed, is captured in memory.

[image: image7.emf]Rx Entity

Output Bytes

Intermediate_Code_Representation

Intermediate_Bitstring_Representation

Huffman_Tree

LZ77 pattern dereference

Huffman Decoding

Used in Huffman Decoding

Input Bytes

Updated Memory

Memory

Encoded_Huffman_Tree

Figure 5: IPDC Rx Entity decompression operation. After decompression, a copy of the final output bytes is pushed into the memory in FIFO fashion.
3
Conclusions
In this document, we have described in detail a compression algorithm that we have proposed.

4
References
[1] RP-122019 - Study on Further EUL Enhancements
[2] R2-130988 – On UL Data Compression

[3] DEFLATE Compressed Data Format Specification version 1.3 (http://tools.ietf.org/html/rfc1951)
[4] GZIP file format specification version 4.3 (http://tools.ietf.org/html/rfc1952)
_1436264903.vsd
Bytes to be (de-)compressed

IP header

_1437334739.vsd
0A0B0C0D

_1437580000.vsd
�

Tx Entity

LZ77 pattern matching

Huffman Coding

Huffman Coding

Input Bytes

_1437580034.vsd
�

Rx Entity

Output Bytes

_1437579987.vsd
0A0B0C0D

_1437334429.vsd
Upper Layers

IPDC Tx Entity

Header Compression

Lower Layers
(RLC/ MAC / PHY)

SDU

PDU

UE

Upper Layers

IPDC Rx Entity

Header Decompression

Lower Layers
(RLC/ MAC / PHY)

SDU

PDU

NodeB / RNC

_1436264888.vsd
IP header

TCP/UDP header

Bytes to be (de-)compressed

