Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #75
Tdoc R2-114313
Athens, Greece 22nd – 26th August 2011

Agenda Item:
7.2
Source:
Ericsson, ST-Ericsson

Title:
Impact of video streaming traffic on LTE
Document for:
Discussion, Decision
1 Introduction
When discussing traffic models to be investigated in the scope of the WI on enhancements for diverse data applications [1] it was mentioned by operators that video streaming accounts for a significant share of the load in today’s mobile broadband networks.

In this document we explain briefly how today’s streaming applications operate and what traffic patterns they generate. Subsequently, we discuss to which extent UEs facing such traffic can make use of DRX and we evaluate whether the system is likely to be limited by the control channel capacity.
2 Discussion
2.1 HTTP instead of RTP/UDP
Traditionally, audio- and video streaming services used RTP/UDP as underlying protocols. However, there is a clear trend to use HTTP over TCP for multimedia streaming services. Two flavours of HTTP based streaming solutions should be distinguished: Progressive Download over HTTP and Adaptive HTTP Streaming. A brief description is provided in the following two subsections. More details can be found e.g. in [3].

2.1.1 Progressive Download over HTTP

Progressive download over HTTP [3] refers to a regular HTTP based file download. As usual, the server delivers a file (e.g. MP4/3GP) containing the audio/video data in response to a GET request issued by the client. However, the client does not wait until the entire file has been received but may start playing the audio/video as soon as a sufficient fraction of the data arrives in its buffer. So called partial GET requests allow the client to request dedicated sections of the entire file which allows jumping to a later point inside a video.

If a client fetches the entire file as quickly as the bottleneck link allows, the traffic characteristics are equivalent to a regular file download. However, servers and clients often throttle the data rate e.g. to something just above the media bitrate in order to reduce the amount of data pre-buffered in the client. If that throttling rate is below the available data rate of the bottleneck link (e.g. radio interface), the observed traffic appears more like a traditional RTP stream where the (eNB’s) buffer runs empty in between consecutive packets.
2.1.2 Adaptive Streaming over HTTP

Also Adaptive Streaming over HTTP [3] builds on top of the HTTP protocol and makes use of GET requests to download files. But unlike the traditional progressive download (2.1.1) the server offers the content as a set of independent media segments which may be worth e.g. 10 seconds of media each. The media player (client) first downloads a manifest file, which allows constructing URLs of all available media segments and possibly alternative quality representations. The media player then downloads one media segment after another using HTTP GET requests and concatenates the media segments on the client side into a continuous media stream.
[image: image1.emf]10 second video 10 second video

initial buffer size reached

(1 Segment = 10s Video)

initial request

download

start play-out

request another segment

consecutive requests

idle period

increasing link rate = faster download

continuously filled

buffer (e.g. in eNodeB)

pre-buffering period

Figure 1: HTTP Streaming
By sending one request per media segment, the client can easily control the fill level of its local buffer based on e.g. the speed at which media segments are received. It is up to client- (and partly server-) configuration how many media segments the client fetches before starting to playback and how many media segments it attempts to download ahead of the current playback position.

It is important to note that the data rate at which media segments are downloaded is not related to or even limited by the media rate. The HTTP server can send a requested media segment as fast as possible, i.e., as fast as the TCP sender allows to. Consequently, from the radio interface point-of-view the transfer of each media segment can be considered as a TCP-based file download if the server is not throttling the data transfer (see section 2.1.1). Since LTE has been optimized for file downloads, it can be expected that it will also perform well for HTTP media streaming.
Proposal 1 Acknowledge that Adaptive HTTP Streaming appears to the underlying network as a sequence of file downloads.

2.2 DRX and battery consumption

From the traffic patterns presented in section 2.1.2 it can be seen that an appropriately configured streaming server in combination with a decent streaming client allow the LTE UE to enter DRX between the data bursts. The UE’s DRX ActiveTime is roughly proportional to the ratio of streaming rate to the available L2 data rate. In other words, a UE in good radio conditions and low instantaneous cell load will be able to download a 10-seconds media segment in much less than ten seconds and enter DRX for the remainder of the 10 second interval.
Proposal 2 Acknowledge that HTTP streaming allows the UE to enter DRX between data bursts.

One should also note that in case of video streaming the LTE data transfer (RF and base band) consumes only a part of the required battery power on the UE side. The decoding of the video data, the rendering of the video and the display are expected to consume a significant share of the power. This should be taken into account when discussing the need for further energy efficiency optimizations for this type of application.

2.3 Video Streaming Capacity

In this section we will evaluate whether a system facing Adaptive HTTP streaming traffic is limited by the capacity of control or data channels. This is to determine whether a system that is loaded with streaming traffic could benefit from “More efficient management of system resources (e.g. UL control channel resources) for connected mode UEs that are temporarily inactive, facilitating potentially larger user populations in connected mode” (see [1]).
Figure 2 shows the user satisfaction (mean opinion score) over the average cell load (number of HTTP streaming users per cell) which can be used to assess the system capacity. As we can see, the satisfaction starts to degrade at around 5 and 11 watchers/cell for 1 MBps and 500 kbps streaming rate, respectively.
[image: image2.png] [image: image3.png]
Figure 2: Video streaming capacity for a 5 MHz deployment,
1 MBps (left) and 500 kbps (right) HTTP stream
In addition to the MOS we also sampled the number of allocated resource blocks for each cell and each subframe. Figure 3 presents the average as well as the 5th and 95th percentile of all samples for the same load levels as Figure 2. In the left part of Figure 3 we observe that with 5 watchers/cell, the average resource usage is already at 85%. The 95th percentile has been at maximum usage from a load of less than 3 watchers/cell. The slopes of the curves look almost the same for 500 kbps stream rate but of course with different numbers. It can also be observed that the 5th percentile increases quickly when increasing the load (watchers/cell) beyond the capacity which indicates that the PDSCH is fully loaded (all resource blocks in all subframes) beyond this point.
[image: image4.png][image: image5.png]
Figure 3: PDSCH utilization for a 5 MHz deployment and
1 MBps (left) and 500 kbps (right) HTTP stream
In this simulation, the Control Channel Elements (CCE) for the PDCCH have been split evenly between uplink and downlink so that 11 CCEs were available for sending downlink assignments. Figure 4 shows the CCE utilization for downlink assignments for different system load. When comparing this to Figure 3 it can be seen that at the (PDSCH) system capacity limit of ~5 (~11) users per cell, only about 50% (70%) of the available CCEs are used on average at 1 MBit/s (500 kbps) streaming rate. Even when increasing the load beyond the capacity (compare to Figure 2) the CCE utilization increases slowly and the 5th percentile indicates that it is never fully loaded.

[image: image6.png][image: image7.png]
Figure 4: CCE utilization on PDCCH
for 1 MBps (left) and 500 kbps (right) HTTP stream
In our simulations we observed decreasing end-user satisfaction at the load level at which full PDSCH utilization was reached whereas PDCCH CCEs were still available. This shows that the system is limited by the PDSCH capacity and that PDCCH optimizations will therefore not help the video capacity.
Also PUCCH (CQI, D-SR) resources consumption of the relatively few streaming users will not limit the system capacity. It is therefore not necessary to withdraw such resources quickly from these (downlink) bandwidth hungry users even though it may be possible to do so in between media segments (see section 2.1).
Based on our analysis we conclude that bandwidth hungry video streaming traffic typically results in high PDSCH load but does not lead to shortage of control channel resources.

Proposal 3 Acknowledge that L1 control channels (PDCCH, PUCCH, …) are unlikely to limit the system capacity for bandwidth hungry video streaming applications.
2.4 Traffic mix
Unlike our simulation environment, a real system will not be loaded with only video streaming traffic. Even if the vast amount of data is generated by such streaming traffic, there will be many UEs transmitting and receiving only small amounts of data (background traffic) every now and then. However, we suggest investigating the impact of such background traffic on the PDCCH load separately from video streaming traffic (see also [2]). A mix of video streaming traffic and background traffic is expected to be less PDCCH hungry than pure background traffic.
If the PUCCH resources (CQI, D-SR) become limiting, they should preferably be allocated to UEs contributing significantly to the PDSCH load so that accurate CQI information is made available. Less accurate CQI information would result in worse PDSCH capacity and consequently reduce the number of streaming users that can be handled by the system. However, it should be discussed whether existing mechanisms allow to efficiently manage PUCCH resource for dormant UEs that contribute little to the PDSCH/PUSCH load.
3 Conclusion

Proposal 1
Acknowledge that Adaptive HTTP Streaming appears to the underlying network as a sequence of file downloads.
Proposal 2
Acknowledge that HTTP streaming allows the UE to enter DRX between data bursts.
Proposal 3
Acknowledge that L1 control channels (PDCCH, PUCCH, …) are unlikely to limit the system capacity for bandwidth hungry video streaming applications.

4 References

[1] RP-110454, “LTE RAN Enhancements for Diverse Data Applications”, Research In Motion UK Ltd.”, RAN-51, Kansas City, USA, 15-18 March 2011
[2] R2-114303, “Analysis of background traffic characteristics”, Ericsson, ST-Ericsson, RAN2-75, Athens, Greece 22nd – 26th August 2011
[3] 3GPP TS 26.247, “PSS Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)”, V10.0.0, 2011-06

[4] Wikipedia on “HTTP Live Streaming”, http://en.wikipedia.org/wiki/HTTP_Live_Streaming, 2011-07-13

[5] IETF, “HTTP Live Streaming”, Draft RFC, http://tools.ietf.org/html/draft-pantos-http-live-streaming-06, 2011-03-31

1/5

