3GPP TSG-RAN WG2 Meeting #70
R2-103152
Montreal, Canada, 10th – 14th May 2010
Agenda item:

10.4
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Improving the asn1 extension mechanism: DL-DCCH messages and optimisation of RACH signalling.
Document for:

Discussion and Decision

1
Introduction
With more and more UMTS 3GPP releases, the existing asn1 is becoming more and more difficult to maintain, partly due to the way in which messages are extended. This is resulting in a higher risk of errors, especially when extensive changes are being agreed to frozen releases long after the release has been frozen and asn1 has been reviewed.
In [2] we discuss potential ways in which the extension mechanism for new releases can be improved. This paper re-iterates some of those improvements, and in particular discusses one particular improvement to RACH signalling to create space for new capability bits which are added as new features are introduced.
2
Discussion
2.1
Extension mechanism

Messages in asn1 can be groups into 2 main types, when considering the way in which extensions are made.

1. Message using critical extensions + non-critical extensions.
This is basically all DL DCCH messages. Critical extension is used to create a new asn1 branch for any new release, and this branch contains the critical information related to configuration and control of any new feature in that release. Non-critical extension is used to extend this critical branch after the release is frozen.

2. Message using non-critical extension only.

This is all broadcast (BCCH) messages and all UL messages. We can only extend these messages with non-critical extensions, because the message needs to be decoded at the target independent of release. Broadcast messages need to be decoded by all UE, and since the NW does not have a release, the extensions need to be made by non-critical extension in order that any parts not implemented by the NW can be discarded.

2.1.1 Potential new DL-DCCH message extension mechanism

In [2] we introduced a potential improvement to the way in which DL-DCCH messages are extended. To recap, instead of extending each RRC message individually, creating a nested branch for each new release - it should be possible to utilise one of the spare values reserved in DL-DCCH-MessageType, to extend for each new release.

DL-DCCH-MessageType ::= CHOICE {

activeSetUpdate

ActiveSetUpdate,

assistanceDataDelivery

AssistanceDataDelivery,

cellChangeOrderFromUTRAN

CellChangeOrderFromUTRAN,

cellUpdateConfirm

CellUpdateConfirm,

counterCheck

CounterCheck,

downlinkDirectTransfer

DownlinkDirectTransfer,

handoverFromUTRANCommand-GSM

HandoverFromUTRANCommand-GSM,

handoverFromUTRANCommand-CDMA2000
HandoverFromUTRANCommand-CDMA2000,

measurementControl

MeasurementControl,

pagingType2

PagingType2,

physicalChannelReconfiguration

PhysicalChannelReconfiguration,

physicalSharedChannelAllocation

PhysicalSharedChannelAllocation,

radioBearerReconfiguration

RadioBearerReconfiguration,

radioBearerRelease

RadioBearerRelease,

radioBearerSetup

RadioBearerSetup,

rrcConnectionRelease

RRCConnectionRelease,

securityModeCommand

SecurityModeCommand,

signallingConnectionRelease

SignallingConnectionRelease,

transportChannelReconfiguration

TransportChannelReconfiguration,

transportFormatCombinationControl
TransportFormatCombinationControl,

ueCapabilityEnquiry

UECapabilityEnquiry,

ueCapabilityInformationConfirm

UECapabilityInformationConfirm,

uplinkPhysicalChannelControl

UplinkPhysicalChannelControl,

uraUpdateConfirm

URAUpdateConfirm,

utranMobilityInformation

UTRANMobilityInformation,

handoverFromUTRANCommand-GERANIu
HandoverFromUTRANCommand-GERANIu,

mbmsModifiedServicesInformation

MBMSModifiedServicesInformation,

etwsPrimaryNotificationWithSecurity
ETWSPrimaryNotificationWithSecurity,

handoverFromUTRANCommand-EUTRA

HandoverFromUTRANCommand-EUTRA,

later-than-r9

DL-DCCH-MessageType-later-than-r9,

spare2

NULL,

spare1

NULL

}

DL-DCCH-MessageType-later-than-r9 ::= CHOICE {

dL-DCCH-MessageType-r10

DL-DCCH-MessageType-r10,

spare7

NULL,

spare6

NULL,

spare5

NULL,

spare4

NULL,

spare3

NULL,

spare2

NULL,

spare1

NULL

}

DL-DCCH-MessageType-r10 ::= CHOICE {

cellUpdateConfirm

CellUpdateConfirm-r10,

measurementControl

MeasurementControl-r10,

physicalChannelReconfiguration

PhysicalChannelReconfiguration-r10,

radioBearerReconfiguration

RadioBearerReconfiguration-r10,

radioBearerRelease

RadioBearerRelease-r10,

radioBearerSetup

RadioBearerSetup-r10,

spare11

NULL,

spare10

NULL,

spare9

NULL,

spare8

NULL,

spare7

NULL,

spare6

NULL,

spare5

NULL,

spare4

NULL,

spare3

NULL,

spare2

NULL,

spare1

NULL

}

RadioBearerSetup-r10

radioBearerSetup-r10

RadioBearerSetup-r10-IEs,

-- Container for adding non critical extensions after

-- freezing REL-11

radioBearerSetup-r10-add-ext

BIT STRING

OPTIONAL,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL
}

With the above extension mechanism, we can clearly separate Rel-10 and later messages from the legacy messages. Any messages not extended in a particular release do not need to be duplicated (network can send earlier release message to the UE). The proposal does not have a backwards compatibility issue - the new message type will never be sent to a UE supporting an earlier release than release 10, and modifying the spare values does not affect the way the message looks to legacy UEs. It has the following advantages

1. When extending for the new release, we only need to make a single change to the existing message structure (DL-DCCH-MessageType) which significantly reduces risk compared to modifying all individual RRC messages. In other words, we are minimising the risk to the legacy system, because we no longer need to change the legacy signalling messages. Only NWs + UEs implementing a new feature from Rel-10 need to implement the new (separate) signalling message - all other signalling remains unaffected.
2. New messages can be optimised - since we no longer need to consider the legacy UE/NW (we are using separate signalling, only implemented with the new features) we don't need to worry about backwards compatibility as the existing signalling remains unaffected, with the single extension at the top level.

3. Since the message is separate, and backwards compatibility is not such an issue, it enables easier early implementation of features, in a release independant manner.

4. With the extension mechanism affecting only the top level, it will result in more efficient signaling, saving bits.

DL-DCCH-MessageType-> later-than-r9-> DL-DCCH-MessageType-r10-> RadioBearerSetup-r10
Only 2 bits are used. No new bits are needed in the future releases when adding critical extensions, which becomes an increasing overhead and burden.

5. When making corrections (non-critical extension) to the frozen release, we do not affect the new release.

6. When extending the new release there is only a small effort to implement and review the extension mechanism, and provides a clear separation between releases which reduces maintenance effort. It also provides the possibility, for example, to specify Rel-10 signaling in a separate section to legacy signaling.
6. We will not encounter the problem found when the nesting level becomes grater than 15.

Proposal 1: Decide whether to use one of the spare values in the top level message DL-DCCH-MessageType to create a new message branch for Rel-10 and later.
Proposal 1a: If proposal 1 is agreed, then decide whether to separate FDD and TDD asn1 streams into separate messages from Rel-10 onwards.

Proposal 1b: Consider further whether any LTE or other asn1 signalling optimisations can be used in UTRA, if we separate messages from Rel-10 onwards.

2.1.3 RACH message extension mechanism

One potential way to extend UL messages, could be in a similar way to the above proposed method for DL DCCH messages.
It would require that the UE can only send the new message type if the NW indicates support for the optimised/new signalling e.g. by a bit on BCCH. Using this mechanism, it should also be possible for pre-rel-10 Ues to implement the optimised UL signalling, and make it easier to have release independent features.

A particular area which can benefit from such improvement would be signalling sent on RACH. A clear example is the RRC Connection Request message. As new releases are developed, we need to add more and more capability bits in the message. Each time we do this, a new non-critical extension needs to be added, which also adds 1 bit to the message.

Unfortunately due to the limited transport block size, and when the capability indications are sent in addition to Measured results on RACH, we have reached the limit of RACH message size (transport blcok size) before needing to segment the message over 2 transport blocks, which delays RACH message transmission and hence delays connection setup and call setup times (even if the UE and NW are in theory capable of features which reduce cell setup times).

RRCConnectionRequest ::= SEQUENCE {

-- TABULAR: Integrity protection shall not be performed on this message.

-- User equipment IEs

initialUE-Identity

InitialUE-Identity,

establishmentCause

EstablishmentCause,

-- protocolErrorIndicator is MD, but for compactness reasons no default value

-- has been assigned to it.

protocolErrorIndicator

ProtocolErrorIndicator,

-- Measurement IEs

measuredResultsOnRACH

MeasuredResultsOnRACH

OPTIONAL,

--
Non critical Extensions

v3d0NonCriticalExtensions

SEQUENCE {

rRCConnectionRequest-v3d0ext
RRCConnectionRequest-v3d0ext-IEs,

-- Reserved for future non critical extension

v4b0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v4b0ext

RRCConnectionRequest-v4b0ext-IEs,

v590NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v590ext

RRCConnectionRequest-v590ext-IEs,

v690NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v690ext
RRCConnectionRequest-v690ext-IEs,

-- Reserved for future non critical extension

v6b0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v6b0ext
RRCConnectionRequest-v6b0ext-IEs,

v6e0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v6e0ext
RRCConnectionRequest-v6e0ext-IEs,

v770NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v770ext

RRCConnectionRequest-v770ext-IEs,

v7b0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v7b0ext

RRCConnectionRequest-v7b0ext-IEs,

v860NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v860ext

RRCConnectionRequest-v860ext-IEs,

v7e0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v7e0ext

RRCConnectionRequest-v7e0ext-IEs,

v7g0NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v7g0ext

RRCConnectionRequest-v7g0ext-IEs,

v920NonCriticalExtensions

SEQUENCE {

rrcConnectionRequest-v920ext

RRCConnectionRequest-v920ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
Looking at the above asn1 definition for RRC Connection Request, copied from v9.2.1 of [1], we can observe that there are already 12 non-critical extensions defined - if any new capabilities (or any IEs) are added in Rel-10, this will increase. Each non-critical extension requires 1 bit in encoding, to indicate presence.

If we define a new RRC Connection Request message that can be used by UEs supporting the message (e.g. Ues supporting a new Rel-10 feature such as 4C-HSDPA), then these bits can already be saved, making space for indication

In addition to saving space by making the obvious optimisation that is merging the non-critical extensions into the new message type, there could potential be further optimisations possible - for example removing any redundant IEs. An example of this would be a UE indicating support for 4C-HSPA. A UE supporting 4C-HSPA would also need to implicitly support, amongst others, HSDPA and mac-ehs. It could be possible to omit groups of earlier capability indications which are implicitly supported by exploiting feature dependancies specified in 25.306 for the newer features. Since we do not need to send these earlier feature indications in order to support the legacy RNC (the new message is only sent if NW indicates support) then these bits become redundant for UEs supporting newer HSPA features. Another possibility would be that the new RRC connection request is only sent by UEs supporting features A,B,C,D (e.g. HSDPA, HSUPA, mac-ehs, mac-i/is). Then the UE only needs to indicate the newer features.
The same principle can also be applied to other RACH messages (Cell Update, URA Update) which saves bits in the same manner.

Additionally, it could be investigated whether there is a need to optimised DCCH messages such as Measurement Report. Although it is less critical to preserve bits, it could be beneficial to use a simplified/optimised message - even for the reasons given for the improvement to DL-DCCH messages (i.e. reducing the risk of affecting legacy messages)
Proposal 2: For RACH messages, create new optimised Rel-10 message type in order to remove the burden of non-critical extension bits.

Proposal 2a: Study further the possibilty of further optimisations to these messages that would be possible with the new message type, for example removing redundant IEs (such as capability for features which are defined in 25.306 as dependancies and are implicitly supported, or a group of features supported by the majority of Rel-10 UEs).

Proposal 2b: Consider the same optimisation to UL-DCCH messages.
4
Conclusion
In this paper we have discussed potential ways to improve the asn1 extension mechanisms, providing the opportunity to reduce risk when implementing new releases and the possibility to introduce signalling optimisations which were not possible in the past. In particular, we have showed one way to address the ongoing issue of RACH message size.

Proposal 1: Decide whether to use one of the spare values in the top level message DL-DCCH-MessageType to create a new message branch for Rel-10 and later.

Proposal 1a: If proposal 1 is agreed, then decide whether to separate FDD and TDD asn1 streams into separate messages from Rel-10 onwards.

Proposal 1b: Consider further whether any LTE or other asn1 signalling optimisations can be used in UTRA, if we separate messages from Rel-10 onwards.
Proposal 2: For RACH messages, create new optimised Rel-10 message type in order to remove the burden of non-critical extension bits.

Proposal 2a: Study further the possibilty of further optimisations to these messages that would be possible with the new message type, for example removing redundant IEs (such as capability for features which are defined in 25.306 as dependancies and are implicitly supported, or a group of features supported by the majority of Rel-10 UEs).

Proposal 2b: Consider the same optimisation to UL-DCCH messages.

Note that if we are to make such improvements, now is the time to make the decision before asn1 is introduceed to Rel-10.
References

[1] 3GPP TS 25.331, Radio Resource Control (RRC); Protocol specification
[2] R2-102408, Improving the asn1 extension mechanism, maintenance, and review process
