3GPP TSG RAN WG2 #69bis
R2-102274
12 ~ 16 April 2010, Beijing, China

Agenda item:
10.4
Source:
Qualcomm Incorporated
Title:
Simplifying ASN.1 management across releases
Document for:
Discussion, Decision
1
Introduction
"To err is human" [1]; we should minimize errors by implementing better and simple procedures.

In this paper, we will highlight the difficulties in maintaining ASN.1 today, and show that the process can and should be simplified.

2
Background

Just after RAN#47 concluded, Qualcomm discovered a bug in the ASN.1 of 25.331v8.9.0 [2]. This bug results in non-backward compatibility of v8.9.0 with v8.8.0 and in non-forward compatibility with v9.1.0 [3]. Additionally, the RAN2 secretary also found another mistake in the ASN.1 code, which is not as severe, but a bug nonetheless. These bugs are described in Annex 1.
Such mistakes can jeopardize the product development plans, and disrupt the evolution of the standard. The objective of this paper is to simplify the management of ASN.1, in order to minimize the chance of making mistakes and to maximize the available time for review.

The objective is to move from Figure 1 to Figure 2, targeting a solution that would allow a greater time to write ASN.1 CRs, to implement them and to check their implementation.

[image: image4.emf]=

=

=

=

=

=

=

=

=

=

=

7.0.0

7.1.0

7.2.0

7.3.0

7.4.0

7.5.0

7.6.0

7.7.0

7.8.0

7.9.0

7.10.0

7.11.0

7.12.0

7.13.0

7.14.0

7.15.0

7.16.0

Rel 7 ASN.1=

Rel 6 ASN.1 +

Rel 7 additions

T

I

M

E

8.0.0

8.1.0

8.2.0

8.3.0

8.4.0

8.5.0

8.6.0

8.7.0

Rel 8 ASN.1=

Rel 7 ASN.1 +

Rel 8 additions

Rel 9 ASN.1=

Rel 8 ASN.1 +

Rel 9 additions

8.8.0

8.9.0

8.10.0

9.0.0 specific

9.1.0 specific

9.2.0 specific

9.0.0

9.1.0

9.2.0

=

=

=

+

+

+

8.8.0 specific

8.9.0 specific

8.10.0 specific

+

+

+

+

+

+

+

+

+

+

+

8.5.0 specific

8.6.0 specific

8.7.0 specific

8.2.0 specific

8.3.0 specific

8.4.0 specific

8.0.0 specific

8.1.0 specific

3
Today's development process
While it is common to reference "the" 25.331 ASN.1, there are actually multiple versions of ASN.1 evolving in parallel, and trying to keep compatibility between each other. Figure 3 illustrates the Rel 7, 8 and 9 versions of ASN.1 for UTRAN. The releases are marked in bold letters.

[image: image1.emf]Write Rel 8 CR

Check Rel 8, vs

Rel 9 vs Rel 10

CRs

Write Rel 9 CR

Implement Rel 8

CRs and check

CR compatibility

Implement Rel 9

CRs and check

CR compatibility

Check Rel 8 CR

implementation

+ fwd/bwd

compatibility

Write Rel 10 CR

Implement Rel

10 CRs and

check CR

compatibility

Check Rel 9 CR

implementation

+ fwd/bwd

compatibility

Check Rel 10 CR

implementation

+ fwd/bwd

compatibility

Write Rel 8 CR

without ASN.1

Write ASN.1 CR

Write Rel 9 CR

without ASN.1

Implement Rel

8, Rel 9, Rel 10

without ASN.1

Implement

ASN.1 CRs and

check CR

compatibility

Check ASN1

implementation

+ fwd/bwd

compatibility

Write Rel 10 CR

without ASN.1

Figure 1: Today’s

development cycle

Figure 2: Target

development cycle

Figure 3: Evolution of Rel 7, 8 and 9 ASN1s

A detailed description of today's development process can be found in Annex 2.
3.1
Changing an uplink message

	Today, when drafting a CR for an uplink message in v7.15.0, the CR author needs to:

1. Make the correct ASN.1 changes to 7.15.0, checking that this message was not already extended by a later release (if the message was already extended by a later release, the tip of the message is blocked. Porting IEs back to older releases might be a solution).

2. Write a shadow Rel 8 CR to v8.9.0, which replicates the *exact* Rel 7 changes.

3. Write a shadow Rel 9 CR v9.1.0, which replicates the *exact* Rel 7/8 changes.

3.2
Changing a downlink message
	Today, when drafting a CR for a downlink message in v7.15.0, the CR author needs to:

1. Make the correct ASN.1 changes to the Rel 7 branch in 7.15.0.

2. Write a shadow Rel 8 CR to v8.9.0, which:

a. replicates the *exact* Rel 7 changes, and

b. makes similar changes in the Rel 8 branch of 8.9.0. These can be very different than the changes in #1, as the structure of the message could be different.

3. Write a shadow Rel 9 CR v9.1.0, which:

c. replicates the *exact* Rel 8 changes (including the inherited Rel 7 changes), and

d. makes similar changes in the Rel 9 branch. These can be very different than steps 1 and 2, especially when the ASN.1 was not frozen.

A discussion on the current solution, its benefits and its cost can be found in Annex 3.

4
A unified ASN.1 code across all releases
4.1
Proposal
	Proposal 1: To streamline and simplify the ASN.1 evolution, we propose the following:

· Delete all the ASN.1 code from the next versions of 25.331 for release 7, 8 and 9.

· Create a new document that carries "the ASN.1" code for UTRAN for all releases after Rel 7.
· A new version of this document is released in step with the 25.331 releases. One release is needed quarterly at today's pace.

· Keep the tabular evolving in each 25.331 release.
Proposal 2: Discuss the need for a process to maintain a high degree of stability of the ASN.1 code:

· Example: Rel 10 could be developed based on a particular Rel 9 version, and maintained in a "running CR" updated each meeting. Merging back the changes to the main ASN.1 document would only be done at the Rel 10 ASN.1 freeze date. It would be a large one time effort.

How would this work?

4.2
Evolution of an uplink message

As uplink messages are extended via non-critical extensions, and there is only one "branch" of the message, the implementation might be missing a cue on when to stop filling the parameters.

For example, let us assume we want to build a Rel 7 UE or network, and all what we have is a unified ASN.1 version of the Cell Update message, which is similar to today's Rel 8 version:

CellUpdate ::= SEQUENCE {

-- User equipment IEs

u-RNTI

U-RNTI,

startList

STARTList,

am-RLC-ErrorIndicationRb2-3or4

BOOLEAN,

am-RLC-ErrorIndicationRb5orAbove
BOOLEAN,

cellUpdateCause

CellUpdateCause,

-- TABULAR: RRC transaction identifier is nested in FailureCauseWithProtErrTrId

failureCause

FailureCauseWithProtErrTrId

OPTIONAL,

rb-timer-indicator

Rb-timer-indicator,

-- Measurement IEs

measuredResultsOnRACH

MeasuredResultsOnRACH

OPTIONAL,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

cellUpdate-r3-add-ext

BIT STRING

(CONTAINING CellUpdate-r3-add-ext-IEs)

OPTIONAL,

v590NonCriticalExtensions
SEQUENCE {

cellUpdate-v590ext
CellUpdate-v590ext,

v690NonCriticalExtensions

SEQUENCE {

cellUpdate-v690ext

CellUpdate-v690ext-IEs,

v6b0NonCriticalExtensions

SEQUENCE {

cellUpdate-v6b0ext

CellUpdate-v6b0ext-IEs,

v770NonCriticalExtensions

SEQUENCE {

cellUpdate-v770ext

CellUpdate-v770ext-IEs,

-- End of Rel 7 messages

v860NonCriticalExtensions

SEQUENCE {

cellUpdate-v860ext

CellUpdate-v860ext-IEs,

-- End of messages for releases beyond 7

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}
OPTIONAL

}

How would the implementations know not to send/expect the cellUpdate-v860ext ? There are multiple ways they could know:

1. Most important normative answer: The tabular version of the message would not contain the parameters in CellUpdate-v860ext-IEs, as they are all Rel 8 parameters. This is a sufficient and accurate way to answer the question.

CellUpdate-v860ext-IEs ::=

SEQUENCE {

-- User equipment IEs

supportOfCommonEDCH

ENUMERATED { true }

OPTIONAL,

supportOfHS-DSCHDRXOperation
ENUMERATED { true }

OPTIONAL,

supportOfMACiis

ENUMERATED { true }

OPTIONAL,

supportOfSPSOperation

ENUMERATED { true }

OPTIONAL,

supportOfControlChannelDRXOperation

ENUMERATED { true }

OPTIONAL

}

2. Additionally, we can keep on using the naming convention which ties the extensions to the version where the parameter was introduced. This can give a cue to the implementors, but should not be used as a normative rule.

3. We could add comments in the ASN.1 message as shown above in blue.

	With this proposal, if drafting a CR for v7.15.0, the CR author would need only one CR to:
1. Make the correct ASN.1 changes to the unified ASN.1 code.

This procedure should be compared to today's procedure exemplified in section 3.1.

4.3
Evolution of a downlink message
Again, assuming we want to build a Rel 7 UE, and all what we have is a unified ASN.1 version of the Active Set update, which is similar to today's Rel 9 version:

ActiveSetUpdate ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

activeSetUpdate-r3-add-ext

BIT STRING

OPTIONAL,

v4b0NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v4b0ext

ActiveSetUpdate-v4b0ext-IEs,

v590NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v590ext

ActiveSetUpdate-v590ext-IEs,

v690NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v690ext

ActiveSetUpdate-v690ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

} OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

r6

SEQUENCE {

activeSetUpdate-r6

ActiveSetUpdate-r6-IEs,

activeSetUpdate-r6-add-ext

BIT STRING

OPTIONAL,

v6b0NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v6b0ext

ActiveSetUpdate-v6b0ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

},

criticalExtensions

CHOICE {

r7

SEQUENCE {

activeSetUpdate-r7

ActiveSetUpdate-r7-IEs,

activeSetUpdate-r7-add-ext

BIT STRING

OPTIONAL,

v780NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v780ext

ActiveSetUpdate-v780ext-IEs,

v7f0NonCriticalExtensions
SEQUENCE {

activeSetUdpate-v7f0ext

ActiveSetUpdate-v7f0ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

CHOICE {

r8

SEQUENCE {

activeSetUpdate-r8

ActiveSetUpdate-r8-IEs,

-- Container for adding non critical extensions after freezing REL-9

activeSetUpdate-r8-add-ext

BIT STRING

OPTIONAL,

v890NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v890ext

ActiveSetUpdate-v890ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

},

criticalExtensions

CHOICE {

r9

SEQUENCE {

activeSetUpdate-r9

ActiveSetUpdate-r9-IEs,

-- Container for adding non critical extensions after freezing REL-10

activeSetUpdate-r9-add-ext

BIT STRING

OPTIONAL,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

}

}

}

}

}
Because of their verbose structure, the choice is really simple: just use the r7 branch to build a Rel 7 product!

	With this proposal, if drafting a CR for v7.15.0, the CR author would need only one CR to:
1. Make the following changes:

a. ASN.1 changes to the Rel 7 branch in the unified ASN.1 code
b. similar changes in the Rel 8 branch in the same message/same document. These can be very different than the changes in #1, as the structure of the message could be different by design.

c. similar changes in the Rel 9 branch. These can be very different than steps 1 and 2, especially when the ASN.1 was not frozen.

This procedure should be compared to today's procedure exemplified in section 3.2.

4.4
Advantages

While this proposal will not prevent bugs from occurring, the advantages are:

· One version of ASN.1 removes the potential mismatch between the different incarnations of ASN.1

· Reduced risk.

· Writing one ASN.1 CR takes less time than writing multiple ASN.1 CRs

· More time to verify the CRs

· Removal of the need for cross checking across releases, results in additional time gain

· Simpler task to check the implementation of the CRs
In the following, 25.331 will refer to the current 25.331 without its ASN.1. The ASN.1 is moved to a new document as described in Figure 4, and assigned arbitrary versions. For simplicity, let us reuse the Rel 9 versions for this new ASN.1 document.

In Figure 5, The 25.331 versions 7.17.0, 8.11.0, and 9.3.0, would be associated with ASN.1 version 9.3.0.

[image: image2.emf]7.15.0

7.16.0

8.9.0

8.10.0

9.1.0

9.2.0

Rel 7 25.331

ASN.1-less

Rel 8 25.331

ASN.1-less

Rel 9 25.331

ASN.1-less

ASN.1

9.3.0

9.4.0

9.3.0

9.4.0 8.12.0

8.11.0

7.18.0

7.17.0

Figure 5 Interoperability example

If the UE is using 25.331 Rel 7 v7.18.0 and the network is using 25.331 Rel 9 v9.3.0, the Rel 9 network cannot distinguish whether the UE is using 25.331 v7.18.0, v7.17.0, or any other Rel 7 version. The Rel 7 UE does not know the release of the network. The UE will use ASN.1 v9.4.0 and the network will use ASN.1 v9.3.0.

If the network is using 25.331 Rel 7 v7.18.0 and the UE is using 25.331 Rel 9 v9.3.0, even though the Rel 7 network is using ASN.1 v9.4.0, it will not exercise or understand the Rel 9 parts of it. The Rel 9 UE does not know the release of the network. The network will use ASN.1 v9.4.0 and the UE will use ASN.1 v9.3.0 to communicate with each other.
	There is no distinction anymore between these three scenarios:

1. UE and Network belong to the same release,
2. UE of higher release + Network of lower release, or
3. UE of lower release + Network of higher release.
For all of these scenarios:
· Both the UE and network use the same ASN.1 code "tree", picking potentially different versions.

· UEs and Networks need to use the right subset of ASN.1, based on their release.

4.5
Implications and Limitations

As we demonstrated in 4.2 and 4.3, it is very easy for the implementation to know what subset of the unified ASN.1 code to use. This information is already provided in the tabular format of the messages.

The lack of separation of ASN.1 codes does not impede the implementation.
Regarding the stability of the unified ASN.1 code, we understand that the ASN.1 code can be broken in many subtle ways, and we welcome a discussion and feedback on this topic. Our views are:

1. We could ponder having two documents (stable vs non stable), or a temporary branch of the document for the development of a new release.

a. This would open a new set of questions on what is stable? When do you migrate text from the non-stable document ot the stable document? Whether you can declare a release complete with an ASN.1 that is not in the stable document.

b. For release 10, a simple solution would be to maintain a "running CR" in RAN2 based on a particular version of Release 9 (for example v9.5.0). We can keep updating this CR without agreeing to it. At the freeze of Rel 10, a collective effort is made to merge this branch back into the stable ASN.1. Even though it would be a large effort, it would be much less than the sum of efforts of maintaining a Rel 10 ASN.1 per today's standard.

2. The ASN.1 subset needed to implement a stable release is stable by itself and should not be affected by future changes.

3. We could have a flexible mapping of 25.331 revisions to this document, to allow for minor corrections (like the ones described in Section 2), in order to guarantee the association of stable releases with working ASN.1s.
4. We could refine our understanding of what is broken, and if faced with an ASN.1 bug, we could advertise the applicability of the bug to a particular feature or a particular release.

Stability: Is it really an issue? If so, there are ways to mitigate it:
Create a branch where new releases are developed. These branches are merged back to the stable ASN.1 text upon the freeze of the release.
4.6
Cost and Risk analysis

The cost and risk analysis of the unified ASN.1 approach is almost the inverse of the analysis presented in the Annex 3 for today's development process.
The main idea is that we now have many releases with a large ASN.1 code base. With the addition of each release, the amount of time required to maintain all these releases kept increasing. On the other hand, the gains seem minimal and are dwarfed by any bug that manages to sneak through the cracks of the process.

To reiterate, the objective of the unified ASN.1 code is to move us from Figure 1 to Figure 2, allowing a greater time to write ASN.1 CRs, to implement them and to check their implementation.

4.7
Valid differences

Valid differences could be all noted in the same document, differed to the tabular in each release, or distributed per release.
5
Summary

Feedback is appreciated on the following proposals to streamline and simplify the ASN.1 evolution:

	Proposal 1: To streamline and simplify the ASN.1 evolution, we propose the following:

· Delete all the ASN.1 code from the next versions of 25.331 for release 7, 8 and 9.

· Create a new document that carries "the ASN.1" code for UTRAN for all releases after Rel 7.

· A new version of this document is released in step with the 25.331 releases. One release is needed quarterly at today's pace.

· Keep the tabular evolving in each 25.331 release.

Proposal 2: Discuss the need for a process to maintain a high degree of stability of the ASN.1 code:

· Example: Rel 10 could be developed based on a particular Rel 9 version, and maintained in a "running CR" updated each meeting. Merging back the changes to the main ASN.1 document would only be done at the Rel 10 ASN.1 freeze date. It would be a large one time effort.

6
References

[1]
An Essay on Criticism, Alexander Pope, 1711
[2]
25.331 v 8.9.0

[3]
25.331 v 9.1.0
7
Annex 1: Recently discovered bugs

Just after RAN#47 concluded, Qualcomm discovered a bug in the ASN.1 of 25.331v8.9.0 [2]. This bug results in non-backward compatibility of v8.9.0 with v8.8.0 and in non-forward compatibility with v9.1.0 [3]. Additionally, the RAN2 secretary also found another mistake in the ASN.1 code, which is not as severe, but a bug nonetheless.

7.1
Details of the bug discovered by Qualcomm

CR 3885R1 added the S-CPICH power offset was added in R8 Active Set Update. This new IE was added in IE “v890NonCriticalExtensions“ for Release 8 Active Set Update, and this IE is OPTIONAL in the CR, which is correct.

However, in the released specification 25.331 v8.9.0, the "OPTIONAL" qualifier is missing:

criticalExtensions

CHOICE {

r8

SEQUENCE {

activeSetUpdate-r8

ActiveSetUpdate-r8-IEs,

-- Container for adding non critical extensions after freezing REL-9

activeSetUpdate-r8-add-ext

BIT STRING

OPTIONAL,

v890NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v890ext

ActiveSetUpdate-v890ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

} (OPTIONAL is missing here in the specification

},

criticalExtensions

SEQUENCE {}

}

Because of this, the decoding of an earlier version of the Active Set Update will fail to pass the ASN.1 v8.9 decoder, and vice-versa. This error is not present in version 9.1.0. Thus, there are forward and backward compatibility problems.

This bug's introduction might have been facilitated by the existence of another agreed CR which had this mistake.

v8.10.0 will fix this problem.
7.2
Details of the bug discovered by the secretary

Similarly, two CRs (one with a bug, and one without), resulted in a very similar problem in the Transport Channel Reconfiguration message:

criticalExtensions

CHOICE {

r8

SEQUENCE {

transportChannelReconfiguration-r8

TransportChannelReconfiguration-r8-IEs,

-- Container for adding non critical extensions after freezing REL-9

transportChannelReconfiguration-r8-add-ext

BIT STRING

OPTIONAL,

v7d0NonCriticalExtensions

SEQUENCE {

transportChannelReconfiguration-v7d0ext

TransportChannelReconfiguration-v7d0ext-IEs,

v7f0NonCriticalExtensions

SEQUENCE {

transportChannelReconfiguration-v7f0ext

TransportChannelReconfiguration-v7f0ext-IEs,

v890NonCriticalExtensions

SEQUENCE {

transportChannelReconfiguration-v890ext

TransportChannelReconfiguration-v890ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}(OPTIONAL is missing here in the specification

}
OPTIONAL

}
OPTIONAL

},

The main difference with the previous bug is that the whole mandatory structure was introduced in v890, so there will not be any compatibility problems. However:

· it is not customary to have these structures as mandatory, and more importantly,

· there is a forward compatibility problem, as v9.1.0 does have an OPTIONAL qualifier for that structure. This could have been fixed in v9.1.0.

The resolution is that v8.10.0 will fix this bug as well, removing the need for any Rel-9 changes.

8
Annex 2: Today's development process
The information in this paragraph is well understood by the RAN2 companies. Nevertheless, let us take a few minutes to contemplate the current procedures. As we will see, maintaining the ASN.1 with the current approach is very labour intensive, and it is only going to get worse with the addition of new releases.

Figure 3 illustrates the Rel 7, 8 and 9 versions of ASN.1 for UTRAN.

When building 25.331 v8.10.0, the first thing to do is to replicate new changes introduced in Rel 7.16.0, then to add changes specific to v8.10.0. This is why we need "shadow CRs" for ASN.1 purposes.

Shadow CRs are needed regardless of ASN.1, and are just a fact of handling multiple releases that are evolving. Shadow CRs help update the procedures, the tabular format of the messages, and the variables in the UE. However, the ASN.1 is usually the tricky part, and the one which is harder to fix when a problem is detected. Procedures and tables can always be fixed without interoperability problems usually.

Extending Figure 3 to all releases is left as an exercise to the reader.

8.1
Evolution of an uplink message

Uplink messages are extended via non-critical extensions, and there is only one "branch" of the message. However, each version of the specification carries the parameters up to where that release needs them.

This is the Cell Update message in Releases 8:

CellUpdate ::= SEQUENCE {

-- User equipment IEs

u-RNTI

U-RNTI,

startList

STARTList,

am-RLC-ErrorIndicationRb2-3or4

BOOLEAN,

am-RLC-ErrorIndicationRb5orAbove
BOOLEAN,

cellUpdateCause

CellUpdateCause,

-- TABULAR: RRC transaction identifier is nested in FailureCauseWithProtErrTrId

failureCause

FailureCauseWithProtErrTrId

OPTIONAL,

rb-timer-indicator

Rb-timer-indicator,

-- Measurement IEs

measuredResultsOnRACH

MeasuredResultsOnRACH

OPTIONAL,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

cellUpdate-r3-add-ext

BIT STRING

(CONTAINING CellUpdate-r3-add-ext-IEs)

OPTIONAL,

v590NonCriticalExtensions
SEQUENCE {

cellUpdate-v590ext
CellUpdate-v590ext,

v690NonCriticalExtensions

SEQUENCE {

cellUpdate-v690ext

CellUpdate-v690ext-IEs,

v6b0NonCriticalExtensions

SEQUENCE {

cellUpdate-v6b0ext

CellUpdate-v6b0ext-IEs,

v770NonCriticalExtensions

SEQUENCE {

cellUpdate-v770ext

CellUpdate-v770ext-IEs,

v860NonCriticalExtensions

SEQUENCE {

cellUpdate-v860ext

CellUpdate-v860ext-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}

OPTIONAL

}
OPTIONAL

}

The text in change marks is not listed in Rel-7.

	For example, when drafting a CR for v7.15.0, the CR writer needs to:

4. Make the correct ASN.1 changes to 7.15.0, checking that this message was not already extended by a later release (if the message was already extended by a later release, the tip of the message is blocked. Porting IEs back to older releases might be a solution).

5. Write a shadow Rel 8 CR to v8.9.0, which replicates the *exact* Rel 7 changes.

6. Write a shadow Rel 9 CR v9.1.0, which replicates the *exact* Rel 7/8 changes.

8.2
Evolution of a downlink message
The downlink messages are even more interesting. With each release, most of the structure of these messages is redefined to regroup parameters before adding new ones. Again, the red text below is not included in Rel 7, when compared to Rel 9:

ActiveSetUpdate ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

activeSetUpdate-r3-add-ext

BIT STRING

OPTIONAL,

v4b0NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v4b0ext

ActiveSetUpdate-v4b0ext-IEs,

v590NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v590ext

ActiveSetUpdate-v590ext-IEs,

v690NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v690ext

ActiveSetUpdate-v690ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

} OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

r6

SEQUENCE {

activeSetUpdate-r6

ActiveSetUpdate-r6-IEs,

activeSetUpdate-r6-add-ext

BIT STRING

OPTIONAL,

v6b0NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v6b0ext

ActiveSetUpdate-v6b0ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

},

criticalExtensions

CHOICE {

r7

SEQUENCE {

activeSetUpdate-r7

ActiveSetUpdate-r7-IEs,

activeSetUpdate-r7-add-ext

BIT STRING

OPTIONAL,

v780NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v780ext

ActiveSetUpdate-v780ext-IEs,

v7f0NonCriticalExtensions
SEQUENCE {

activeSetUdpate-v7f0ext

ActiveSetUpdate-v7f0ext-IEs,

v7g0NonCriticalExtensions
SEQUENCE {

activeSetUdpate-v7g0ext

ActiveSetUpdate-v7g0ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

CHOICE {

r8

SEQUENCE {

activeSetUpdate-r8

ActiveSetUpdate-r8-IEs,

-- Container for adding non critical extensions after freezing REL-9

activeSetUpdate-r8-add-ext

BIT STRING

OPTIONAL,

v890NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v890ext

ActiveSetUpdate-v890ext-IEs,

v7g0NonCriticalExtensions

SEQUENCE {

activeSetUpdate-v7g0ext

ActiveSetUpdate-v7g0ext-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

}

}

}

}
	When drafting a CR to v7.15.0, the CR writer needs to:

4. Make the correct ASN.1 changes to the Rel 7 branch in 7.15.0.

5. Write a shadow Rel 8 CR to v8.9.0, which:

e. replicates the *exact* Rel 7 changes, and

f. makes similar changes in the Rel 8 branch of 8.9.0. These can be very different than the changes in #1, as the structure of the message could be different.

6. Write a shadow Rel 9 CR v9.1.0, which:

g. replicates the *exact* Rel 8 changes (including the inherited Rel 7 changes), and

h. makes similar changes in the Rel 9 branch. These can be very different than steps 1 and 2, especially when the ASN.1 was not frozen.

9
Annex 3: Analysis of today's development process
It is important to take a step back and ask ourselves why do we have the existing solution, and where is the balance of benefits versus cost and risk?

Where is the balance of benefits versus cost and risk today?
9.1
Advantages

Because there is a separate ASN.1 code for each version of the ASN.1, it is very clear for the developers which parameters need to be populated in each release, and conversely, which parameters are to be expected. This information can minimize confusion at the development phase, and thus during IOT testing. However, this information is also provided in the tabular format of the messages.

The main advantage of multiple release:
Clean separation of parameters from different release.
Another perceived advantage is the ability to isolate stable releases from releases in development. For example, one can argue that Release 7 is much more stable than Release 9, and merging them together could introduce bugs for Release 7 UEs. This claim needs further scrutiny, and if it is deemed valuable, it should be addressed in any solution.

Other possible advantage: It is good to keep releases separate, as they have different stability levels.
To our knowledge, these are the 2 advantages to maintaining an ASN.1 per release. ASN.1 is the law that governs creating messages. How far does this law apply?

9.2
Implications and Limitations

In the following, an entity is either the UE or the RNC, and any compatibility bugs are excluded.

By construction, two entities belonging to any 2 different releases can communicate, if they follow the rules defined in 25.331 for forward and backward compatibility. However, there is no communication of which sub release an entity is using, because the release information is exchanged at the release level (from Rel-8) and it is only from the UE to the network:

AccessStratumReleaseIndicator ::=
ENUMERATED {

rel-4, rel-5, rel-6, rel-7, rel-8,

spare11, spare10, spare9, spare8,

spare7,
spare6,
spare5, spare4, spare3,

spare2, spare1 }

There is no communication of which release the network is using.
There is no communication of which sub-release the UE is using.

For example, 5if the UE is using Rel 7 v7.16.0 and the network is using Rel 9 v9.1.0, the Rel 9 network cannot distinguish whether the UE is using v7.16.0, v7.15.0, or any other Rel 7 version. The Rel 7 UE does not know the release of the network. The UE will use v7.16.0 and the network can use v9.1.0 or v7.15.0 to communicate with each other.

If the network is using Rel 7 v7.16.0 and the UE is using Rel 9 v9.1.0, the Rel 7 network does not understand any Rel 9 ASN.1, and it cannot even distinguish whether the UE is using a version released at the same time as v7.16.0, v7.15.0, or any other Rel 7 version. The Rel 9 UE does not know the release of the network. The network will use v7.16.0 and the UE will use v9.1.0 to communicate with each other.
[image: image3.emf]=

=

7.15.0

7.16.0

8.9.0

8.10.0

9.1.0 specific

9.2.0 specific

9.1.0

9.2.0

=

=

+

+

8.9.0 specific

8.10.0 specific

+

+

Figure 6 Interoperability example
In theory, the Rel 9 entity could (or should) switch its ASN.1 to v7.15.0, in order to gain both advantages described in 9.1 (v7.15.0 is the Rel 7 version which would be known to an entity built with a Rel 9 v9.1.0). Indeed, the Rel 9 ASN.1 does not provide any limits on the use of parameters defined beyond Rel 7. If the Rel 9 entity uses the Rel 9 ASN.1 instead of the Rel 7 ASN.1 to communicate with a Rel 7 entity, the Rel 9 entity may send parameters defined for Rel 8 or Rel 9, but that would be outside the standard's scope.

In order to realize the advantage of maintaining multiple ASN.1 releases (see 9.1),
the higher release entity should switch its ASN.1 to a lower release version.
However: 1- The UEs do not know the release of the network
2- This is not required for compatibility purposes.
3- An external observer cannot detect which version is being used (see caveats below) .
However, as already stated, UEs do not know the release of the network. So, they have to use their own ASN.1 release.

Similarly, the Rel 9 network is not required to switch its ASN.1 to be able to communicate with the Rel 7. By the construction of these ASN.1 releases and versions, the Rel 9 ASN.1 contains all the prior versions of the downlink messages (see 3.2).

In the example above, the Rel 9 network could continue to use v9.1.0 of ASN.1 to communicate with the Rel 7 UE, as it can rightly assume that the Rel 7 subset in v9.1.0 is exactly the same as in v7.15.0. This assumption should drive away any stability issues as well. For an external observer, if there are no bugs in the ASN.1 or in the implementation, and if we ignore the overhead messages and other users for the sake of this argument, it should be impossible to detect whether the Rel 9 network is using the ASN.1 found in v9.1.0 or in v7.15.0. As a matter of fact, the network could even choose to use v8.9.0 (ignoring the bugs we just discovered).

In general, if the higher release entity keeps on using its version of the ASN.1 (whether because it is a UE forced to do so, or whether it is more convenient for the network implementation), the advantages of the current approach disappear for the Rel 9 entity.

	In summary, there are three scenarios:

1. UE and Network belong to the same release:

· Both the UE and network use the same ASN.1 release, but potentially different versions.

· The current approach precludes either entity from using non-existent parameters, and could shelter them from stability issues in later releases.

2. UE of higher release + Network of lower release:

· Each entity uses its own ASN.1 release.

· There are NO gains from the current approach.

3. UE of lower release + Network of higher release:

· The network could use any ASN.1 code from any release greater than or equal to the UE's release.

· Practically, there are NO gains from the current approach. There are potential gains for the network only, if the network matches the UE's ASN.1 release, for each UE.
Which scenarios are the most common or the most important?

9.3
Cost and Risk analysis

The apparent gains of maintaining multiple ASN.1 codes are the result of the absence in ASN.1 of any future IEs defined later, restricting the choices of the implementations. When such restrictions are useful, they only apply to the network side, and only if the network decides to downgrade its ASN.1 per UE.

What is the cost of supporting today's approach of ASN.1 code in each release?

During the standard development process, there is an overhead associated with each CR made to an older release, as described in 3.1 and 3.2. This overhead and complexity result in:

· Neat separation of releases in the different 25.331 documents.

· Risk of mismatch between the different incarnations of ASN.1, because of mistakes in the CRs.

· Time wasted writing multiple ASN.1 CRs and checking them against each other.

· Time wasted merging different versions of the CRs for different releases.

· Additional risks of making more mistakes, with each merge operation.
· Lack of time available to check the ASN.1 implementation in general.

· Delayed availability of 25.331 versions before the submission deadline of the next meeting. This by itself closes the vicious loop, because it leaves little time to write quality CRs, and thus results in more errors and more time needed to merge CRs.
During the product development process, this translates into:

· The neat separation of releases allows for:

· The minimization of message formatting errors when the UE and the network belong to the same release.

· In order to achieve the gains discussed in 9.1, and as discussed in 9.2, the network would have to implement every release of ASN.1, in order to switch codes with each UE release, with the following implementation implications:
· Need to support multiple libraries (or objects) for each of the releases.

· Increased memory requirements.

· Potential time waste in order to debug errors introduced during the standard development process. These errors could have been introduced at different stages:

· Errors due to incorrect CRs that were agreed without proper review.

· Errors due to merging of the CRs; the merging being done separately for each release

· Errors due to CR clashing, when each of the CRs is correct by itself, but are incorrect when merged together.
· Potential scheduling delays due to problematic releases found to be non backward compatible.
9.2
Valid differences and Side effects

Since there were no available Rel 9 drafts of 25.331 v9.2.0, at the time of writing this contribution (an example of the problems with the current procedures), we compared the ASN.1 draft versions v7.16.0 and v8.10.0.

Scanning through the differences, we did not spot any technical discrepancies.

There were some valid differences between the releases:

· Different reserved values (example: DefaultConfigIdentity-r6). However, these are described in the comments, which are not technically part of the ASN.1 code. The reserved values are also detailed in the tabular.
There were many instances of comments about behaviour for "this version of the specification". However, we didn't find any difference between them. Any differences could be merged in an eventual solution with only one ASN.1 code.

On the other hand, there are many editorial differences as a side effect of making changes in different documents. We found at least two differences that are not really editorial, but they don't create any compatibility issues:
· Difference in a container name (non vs Non):

UE-CapabilityContainer-IEs ::=

SEQUENCE {

-- Container for transparent transfer of capability information not related to

-- features for which early implementation is desired

ue-RadioAccessCapability-v690ext
UE-RadioAccessCapability-v690ext,

ue-RATSpecificCapability-v690ext
InterRAT-UE-RadioAccessCapability-v690ext
OPTIONAL,

v6b0NonCriticalExtensions

SEQUENCE {

ue-RadioAccessCapability-v6b0ext
UE-RadioAccessCapability-v6b0ext-IEs,

v6e0NonCriticalExtensions

SEQUENCE {

ue-RadioAccessCapability-v6e0ext
UE-RadioAccessCapability-v6e0ext-IEs,

v770NonCriticalExtensions

SEQUENCE {

ue-RadioAccessCapability-v770ext
UE-RadioAccessCapability-v770ext-IEs,

v790NonCriticalExtensions

SEQUENCE {
· The difference in the IE name does not create any interoperability problems

· Difference in an IE name:

KeplerianParameters ::=

SEQUENCE {

toe-nav

BIT STRING (SIZE (14)),

ganss-omega-nav

BIT STRING (SIZE (32)),

delta-n-nav

BIT STRING (SIZE (16)),

m-zero-nav

BIT STRING (SIZE (32)),

omegadot-nav

BIT STRING (SIZE (24)),

ganss-e-nav

BIT STRING (SIZE (32)),

idot-nav

BIT STRING (SIZE (14)),

a-sqrt-nav

BIT STRING (SIZE (32)),

i-zero-nav

BIT STRING (SIZE (32)),

omega-zero-nav

BIT STRING (SIZE (32)),

c-rs-nav

BIT STRING (SIZE (16)),

c-is-nav

BIT STRING (SIZE (16)),

c-us-nav

BIT STRING (SIZE (16)),

c-rc-nav

BIT STRING (SIZE (16)),

c-ic-nav

BIT STRING (SIZE (16)),

c-uc-nav

BIT STRING (SIZE (16))

}

Page 17 of 17

