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1 Introduction

When defining the baseline architecture for LTE Rel-8 it has been decided not to specify a push-back flow control protocol for the S1 interface. RAN2 has also decided that a flow control mechanism on the Uu interface from the eNodeB towards the UE is not needed.
In the scope of the relaying work for LTE Rel-10 it has been proposed in [1] and [2] to specify a flow control mechanism for the Un interface, i.e., between the donor eNodeB and the relay node. 
In this document we argue against such solutions and show why flow control is not needed to improve efficiency and why it provides worse performance than a decent queue management mechanism. 
2 Background
Both, a push back flow control mechanism as well as queue management solution are supposed to enforce a reasonable queue size in front of the bottleneck link. Targeting too little data in the queue bears the risk of a buffer under-run which translates into in-optimal performance. Too much data in a queue reduces the responsiveness of the application and other applications sharing the same queue. Furthermore, it has been argued in [1] and [2] that too large queues in a relay are crucial in case of a handover. In order to compensate for variations in link quality and scheduling assignments, the flow control mechanism should attempt to have at any time data for 100 ms in the queue.

Most Internet applications use TCP which reacts to packet loss (drops) by reducing the send rate (congestion window). Also applications that do not use TCP are supposed to behave TCP friendly, i.e., to reduce their rate accordingly upon detection of packet losses. Queue management algorithms drop packets intentionally and thereby achieve the bottleneck queue to decrease.
3 Discussion

A queue management algorithm in the relay node detects a too large queue and reacts by dropping or marking (ECN
) an IP packet from the front of the queue. The following packet or the marked packet triggers a TCP DUP-ACK (negative acknowledgement) in the TCP receiver which propagates back to the TCP sender. The reduction of the congestion window forces the TCP sender to stop transmitting any new packet so that the queue in front of the bottleneck link shrinks. It should be noted that it take almost precisely one end-to-end round trip time from the dropping/marking until the queue starts to shrink. 

With a push back flow control mechanism the relay node is also configured to detect a too large queue. If the queue exceeds the threshold, the relay requests the eNodeB to reduce the transmission rate on this particular bearer. As a consequence, packets start queuing in the eNodeB instead. In order to avoid excessive end-to-end delays, the eNodeB must at some point in time inform the TCP end-points about the upcoming congestion. It does that by means of a queue management algorithm as described above. The congestion signal (dropped or marked packet) must propagate via the queue in front of the bottleneck link and from there to the UE and back to the TCP sender. Obviously, the time it takes to notify the TCP source about the congestion is much longer than with the queue management mechanism in the relay node. 
Based on this comparison, we conclude that a queue management based solution achieves lower end-to-end latency and better performance.
It has been argued that the queue size in the relay could be reduced significantly with a flow control mechanism. However, with the same target minimum queue size (e.g. 100 ms worth of data) both solutions capture about the same amount of data. Making the flow control more aggressive requires significantly more control signaling over the Un interface and bears the risk of under-utilization. 
It has also been mentioned, that packet losses (drops) are not acceptable as they reduce the efficiency and consequently the system capacity. First of all, the drop rate is low for typical LTE bit rates: ~0.02% of all IP packets need to be dropped in a queue in front of a bottleneck link that provides a data rate of 5 MBit/s. For higher data rates this ratio is even lower. But it is important to note that the few retransmissions of dropped packets have no impact on the system capacity: If the Uu interface is the bottleneck, the Un interface is by definition not the bottleneck and has no impact on the system capacity. On the other hand, if Un is the bottleneck, there is no queue in the relay and no packets are dropped in that node but rather in the eNodeB. We therefore claim that the queue management based solution is more resource efficient as it does not require any additional signaling whereas a flow control approach relies on frequent control information.
Finally, it should be noted that a queue management based approach requires no standardization and no inter-operability testing.

Proposal 1: Agree that flow control on the Un interface is not needed.
4 Conclusion

We have shown in section 2 that flow control in general and for the Un interface in particular is not needed and that it delays the end-to-end congestion control mechanism provided by TCP. A simple queue management scheme requires no control signaling via Un and does not need to be standardized nor inter-operability tested. Finally, both solutions queue a similar amount of data.
Based on these findings we ask RAN2 to agree on the following proposal.
Proposal 1:
Agree that flow control on the Un interface is not needed.
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6 Annex – Examples

6.1 Bottleneck at Un Interface

	· Queues build up in eNodeB

· Empty queues in Relay

· AQM drops a packet when the queue becomes too large (e.g. when the queuing delay exceeds ~200 ms)
· This limits data rate on S1/CN to ~2 MBit/s.
· eNodeB can serve queues in any order
When scheduled equally, the data rate on each Uu link is limited to ~1 MBit/s. But any other ratio (e.g. dependent on QoS is possible)
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Figure 2: Bottleneck on Un


6.2 Bottleneck on Uu

	· Empty queues in eNodeB

· Queues build up in Relay

· AQM drops a packet when the queue becomes too large (e.g. when the queuing delay exceeds ~200 ms)
· This limits data rate on CN, S1 and Un 
to the sum of the Uu rates: ~30 MBit/s

· eNodeB can serve queues in any order
It has not impact on the throughput.
· Note: Reasonable queuing in relay
~200 ms * (RateUu1 + RateUu2) = 750 KByte
Which can be drained in 200ms.
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Figure 3: Bottleneck on Uu


6.3 Bottleneck on Uu2 and Un

	· Empty queues in eNodeB for UE2. If it is a shared queue: 19 of 20 packets for UE1.
· Empty queue in Relay for UE1.
Non-Empty queue for UE2

· AQM drops a packet when the queue becomes too large (e.g. when the queuing delay exceeds ~200 ms)
· If the eNodeB has a shared queue, it most likely hits a packet for UE1… which is good.
In the relay there are separate queues with separate AQM entities. Queue of UE1 does not drop any packets. Queue of UE 2 drops packets in accordance to Uu2 rate.

· AQM limits data rate 
on CN, S1 and Un to 20 MBit/s,
on Uu_UE1 to 19 MBit/s

· eNodeB can serve queues in any order
It has not impact on the throughput.
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Figure 4: Bottleneck on Uu2 and Un





























� If the server and the client have negotiated the use of Explicit Congestion Notification (ECN) the queue management functionality can set the CE (congestion experienced) bit in the IP header rather than dropping the packet. Like for any lost packet, the TCP sender reduces its congestion window to 50% but it does not perform a retransmission.
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