3GPP TSG RAN WG2 meeting #67
Tdoc R2-094498
Shenzhen, P. R. China, 24 – 28 August 2009

Agenda Item:
5.8.6
[Rel-8 RRC (36.331); Other]
Title:
RRC protocol extension in the SEQUENCE type using the ASN.1 extension marker
Source:
Ericsson

Document for:
Discussion

Attachment(s):
None
1
Introduction
Mechanisms have been introduced in the EUTRA RRC syntax to allow future extension of the protocol. The main characteristics of those have been discussed, e.g., in Tdoc R2-093830 [1].
This document focuses on a particular aspect of non-critical extension in the SEQUENCE type using the ASN.1 extension marker. The extension marker is indicated in the ASN.1 code using three consecutive dots ("..."). When included in an information element of the SEQUENCE type, it allows new components to be added incrementally into the sequence after the extension marker. The ASN.1 Packed Encoding Rules (PER) [2] encapsulates those additions such that a receiver, unacquainted with all or part of these additions, may anyhow correctly decode those parts known to it, whilst ignoring the unknown parts.
Nevertheless, certain consideration about the PER generated overhead is required; in particular, if multiple components in the ExtensionAdditionList
 of the SEQUENCE type are present in a particular encoding.

2
Extending the SEQUENCE type
2.1
Extension overhead in the Packed Encoding Rules (PER)

In order to understand the concern, it is necessary to understand the mechanisms the PER are using for the encapsulation of the components in the ExtensionAdditionList. An example (1) might be useful:
-- /Example 1/ ASN1START

AnIE-WithExtensionMarker ::=
SEQUENCE {

-- RootComponentTypeList

...,

extField1

IE-Type1

OPTIONAL,

extField2

IE-Type2

OPTIONAL,

extField3

IE-Type3

OPTIONAL
}

-- ASN1STOP
In this example, three new components have been added into the sequence after the extension marker: extField1 to extField3; all of them marked OPTIONAL.
If none of these components is present in a particular encoding of the information element, the PER encoding of it is unaffected. The extension bit [2] included in the head of the encoding due to the presence of the extension marker is zero, as if no new components had been added.
On the other hand, when one or more of the new components is present, a number of steps are taken in the PER encoding of the sequence (the UNALIGNED version assumed):
–
The extension bit at the head of the encoding of the sequence is toggled to one;

–
A bit-field, of length 3 in this case, is generated to indicate the presence of each one of the extension additions in the ExtensionAdditionList. A bit value of "1" indicates the presence of the corresponding extension addition; a bit value of "0" indicates the absence. The bit field is preceded by a length determinant, a normally small number; encoded equal to "2" and decoded as 3 in this case. The length determinant itself requires 7 bits (unless the decoded value is greater than 64, in which case additional octets are added);

–
This is followed by the encoding of each extension addition present in the particular encoding of the sequence. Each extension addition is encoded (individually) as if it were the value of an open type field: it is encoded as a non-empty bit string, with zero bits added to it to produce a multiple of eight bits. The bit string is preceded by a length determinant equal to the number of octets produced.
If, for instance, the extField1 and extField3 are included in a particular encoding, the encapsulation of these two fields performed in the PER encoding could be illustrated like this:
	0
	<Root>
	0 000010
	101
	0 <len1>
	<extField1>
	<pad>
	0 <len3>
	<extField3>
	<pad>

	1
	nRoot
	7
	3
	8
	n1
	0..7
	8
	n3
	0..7

	
	
	7 + 3
	n1 + (8..15)
	n3 + (8..15)

The extension bit is toggled to one; it is followed by the encoding of the root components; followed by the bit-field indicating the presence of the two extension additions preceded by the associated length determinant; followed by the two extension additions present in the encoding, each encapsulated with an associated length determinant and possible (0 to 7 bits of) padding.
If the PER overhead, generated by the extension mechanisms in this case, is analysed and compared with what would have been the case if the extField1 and extField3 were part of the root component, it is evident that the bits belonging to the actual extField1 and extField3 fields and the bit-field indicating their presence (light yellow background) are necessary in the encoding; whereas the three length determinants and the possible padding (lavender background) are added as a PER generated overhead due to the extension. In this case, the PER overhead is thus anything between 23 and 37 bits, depending on the actual lengths of the extField1 and extField3 fields.
This is not a negligible overhead. The length determinant associated with the bit-field is inevitable and not much to argue about. The encapsulation of the extension additions, however, may require some consideration.
2.2
Ways to minimise the PER extension overhead

2.2.1
Making extension additions OPTIONAL

The PER overhead caused by the length determinant and the possible padding associated with each extension addition can be reduced in many cases. A first observation is that an extension addition that is not needed in a particular encoding should not be present. If absent, the corresponding length determinant and possible padding are removed (like they were for the extField2 in the previous example). Hence, the following recommendation:
Recommendation 1:
An extension addition made in the SEQUENCE type should be marked OPTIONAL (or DEFAULT) in the ASN.1 code, and excluded from the particular encoding, whenever not needed.

2.2.2
Grouping extension additions together

Another possible optimisation is to group extension additions that are introduced in the same release of the specification together, such that they share the same length determinant and possible padding. This can be achieved in two ways:

–
placing the extension additions together within a concept in the ASN.1 known as an ExtensionAdditionGroup; or

–
placing them together within a SEQUENCE type, placed as a single component within the ExtensionAdditionList (marked OPTIONAL, according to the recommendation 1).
An ExtensionAdditionGroup is indicated in the ExtensionAdditionList using double square brackets, as shown in the following example (2):
-- /Example 2/ ASN1START

AnIE-WithExtensionMarker ::=
SEQUENCE {

-- RootComponentTypeList

...,

[[
-- vNxy extension additions

extField1

IE-Type1

OPTIONAL,

extField2

IE-Type2

OPTIONAL,

extField3

IE-Type3

OPTIONAL

]]
}

-- ASN1STOP
This is the same example as example 1, with the only difference that the three extension additions are placed within a common ExtensionAdditionGroup. The implication of this arrangement is that the three extension additions, if present, are encoded together as if they were a single value of an open type field.
If, like in the previous case, the extField1 and extField3 are included in a particular encoding, the encapsulation of these two fields performed in the PER encoding could be illustrated like this:

	0
	<Root>
	0 000000
	1
	0 <len=(3+n1+n3+7)/8>
	101
	<extField1>
	<extField3>
	<pad>

	1
	nRoot
	7
	1
	8
	3
	n1
	n3
	0..7

	
	
	7 + 1
	3 + n1 + n3 + (8..15)

The difference compared to the example 1 is notable: the two extension additions are treated as a single component in the ExtensionAdditionList. They are placed directly following each other; preceded by a bit-field of a defined length of 3 in this case, indicating the presence (or absence) of each extension addition.
It should also be noted that if all three of the extension additions, extField1 to extField3, are absent in a particular encoding, the entire ExtensionAdditionGroup is marked absent in the encoding and not included.

Comparing the PER overhead, generated by the extension mechanisms in the example 2 with the example 1, the PER overhead in the example 2 is anything between 16 and 23 bits, which is significantly less than in the example 1, where the corresponding overhead was anything between 23 and 37 bits; a saving of typically about 10 bits.
If all three fields were present in a particular encoding, the saving would be even larger. If none or only one of the fields were present, the difference would be none or negligible.

The other option to achieve the same thing is placing the extension additions together within a separate SEQUENCE type, placed as a single component within the ExtensionAdditionList, as shown in the following example (3):

-- /Example 3/ ASN1START

AnIE-WithExtensionMarker ::=
SEQUENCE {

-- RootComponentTypeList

...,

vNxyExtensionAdditions

SEQUENCE {

extField1

IE-Type1

OPTIONAL,

extField2

IE-Type2

OPTIONAL,

extField3

IE-Type3

OPTIONAL

}

OPTIONAL
}

-- ASN1STOP
In fact, the solution in the example 3 results in exactly the same transfer syntax encoding as achieved in the example 2, with a few rather subtle differences:
–
In example 3, the vNxyExtensionAdditions SEQUENCE is not automatically excluded from the encoding when all the three fields inside are absent. The SEQUENCE is marked OPTIONAL and can be excluded, but it needs to be done explicitly. The ExtensionAdditionGroup in example 2 is excluded automatically when all three fields inside are absent.

–
The three fields within the vNxyExtensionAdditions SEQUENCE in example 3 need not necessarily be marked OPTIONAL, the vNxyExtensionAdditions SEQUENCE (marked OPTIONAL) may anyhow be excluded from the encoding, if it is not needed.
–
The separate SEQUENCE in example 3 may include an extension marker of its own; that is not possible in the ExtensionAdditionGroup in example 2. (It could be useful if a possibility for "non-incremental" additions is desirable. However, the conclusion in section 2.3 below is that this is likely not the case.)
To conclude, when two or more extension additions are introduced in a SEQUENCE type in the same release (or frozen version) of the specification, there can be significant savings in the PER overhead by grouping those together as a single component in the ExtensionAdditionList of the affected SEQUENCE type. Hence, the following recommendation:
Recommendation 2:
Whenever two or more extension additions are introduced in the SEQUENCE type in the same release (or frozen version) of the specification, they should grouped together in the ASN.1 code, using either an ExtensionAdditionGroup or within a separate SEQUENCE type placed as a single component within the ExtensionAdditionList.

Whether using the ExtensionAdditionGroup or a separate SEQUENCE type to group the extension additions is perhaps not very critical. The essential properties are the same and there could be advantages with both alternatives. However, in order to ease the maintenance of the specification and to keep a consistent style in the ASN.1 code, it should be useful with a common guideline for how these extensions should be implemented. Preferably, only one of the two alternatives should be used, and be used consistently in this kind of extensions.
It might also be worth taking note of the fact that although the grouping is not needed when only a single extension addition is made in the ExtensionAdditionList (in a certain release), there is usually not a significant cost involved in it. This observation may be an argument to extend the suggested guideline and apply the "grouping" also the case of a single extension addition. It might improve the consistency in how these extensions are performed.
2.3
Handling of "non-incremental" extension additions

In general, the extensibility of the ASN.1 code, using the extension marker, does assume that new extension additions are added incrementally in the ExtensionAdditionList, i.e., adding new components at the end of the list. Adding a new extension addition before the end of the ExtensionAdditionList would break the backward compatibility.
In the UTRA RRC protocol (TS 25.331), there is a concept known as the Variable Length Extension Container (VLEC), which can be used to capture extensions where the incremental approach is not desired. This option has been used in the UTRA RRC protocol to capture certain extensions related to "release independent" features. The idea is that although a certain information element, needed for such a feature, is introduced in a "late" release, it shall be available for implementation in UEs of earlier release. Using the VLEC, usually placed up front in the list of extensions, the UE needs not to bother about a lot of other extensions, introduced after the particular release of the UE.

It could be questioned whether a similar mechanism is needed in the EUTRA RRC protocol, in order to handle similar situations in the SEQUENCE type when using the extension marker. However, there is a clear difference between the non-critical extensions, the way they are implemented in the UTRA RRC protocol, and the SEQUENCE type using the extension marker. In the UTRA case, successive extension layers are "wrapped inside each other"; in order to reach an extension (n+1) in the encoding, the sender/receiver first has to encode/decode the (mandatory parts of) extension (n). For the "release independent" features, this could be an obstacle, as both the sender and the receiver might have to deal with a lot of syntax related to unsupported features, in order to reach the "release independent" part. The VLEC offered an alternative to that.

In case of the SEQUENCE type using the extension marker, the situation is different. Each extension addition, or ExtensionAdditionGroup, is enclosed in a separate wrapping, as shown in the previous examples in this document. As long as all the components in the addition are marked OPTIONAL (recommendation 1), the sender can easily exclude them. It should also be relatively easy to implement the receiver such that it ignores an extension addition, if the sender includes it, but which does not contain any syntax related to the release/features the UE supports.

For instance, assume the following example (example 4, based on example 3 above):

-- /Example 4/ ASN1START

AnIE-WithExtensionMarker ::=
SEQUENCE {

-- RootComponentTypeList

...,

v9x0ExtensionAdditions

SEQUENCE {
-- A "fozen" addition in Rel-9

extField1

IE-Type1

OPTIONAL,

extField2

IE-Type2

OPTIONAL,

extField3

IE-Type3

OPTIONAL

}

OPTIONAL,

v10x0ExtensionAdditions

SEQUENCE {
-- A "release independent" addition in Rel-10

extField4

IE-Type4

OPTIONAL

}

OPTIONAL
}

-- ASN1STOP
In this case, there is a set of frozen Rel-9 additions. A set of "release independent" additions is made in Rel-10 and placed after the Rel-9 additions.

If a UE manufacturer would like to use the extField4 for the release independent feature in a UE, otherwise specified according to Rel-8, it is clear that if the UE is sending this IE, the UE should not include the v9x0ExtensionAdditions; it simply leaves the v9x0 extension absent in the PER encoding. If the UE receives the IE, although the sender might include the v9x0ExtensionAdditions, the ASN.1 decoder in the UE could make use of the length determinant associated with the v9x0ExtensionAdditions and simply ignore the octets containing the extField1 to extField3 fields. In that way, the precise decoding of those fields is unnecessary and can be avoided.
As a conclusion, it seems unnecessary to introduce a concept like the VLEC in the UTRA RRC protocol for the extension of the SEQUENCE type in the EUTRA RRC protocol.
3
Conclusion and recommendations
The overhead, caused by the Packed Encoding Rules (PER) when introducing extension additions in the SEQUENCE type, is analysed. The conclusion results in the following two recommendations:
Recommendation 1:
An extension addition made in the SEQUENCE type should be marked OPTIONAL (or DEFAULT) in the ASN.1 code, and excluded from the particular encoding, whenever not needed.

Recommendation 2:
Whenever two or more extension additions are introduced in the SEQUENCE type in the same release (or frozen version) of the specification, they should grouped together in the ASN.1 code, using either an ExtensionAdditionGroup or within a separate SEQUENCE type placed as a single component within the ExtensionAdditionList.

It is proposed that RAN2 adopts these two recommendations and produce a common guideline for how these extensions should be implemented. The preference is to use one of the two alternatives in the recommendation 2, and one only. The preference is also to include the case of a single extension addition in the guideline based on the recommendation 2, as this would help to maintain a consistent style of this kind of extensions in the future.
Further more, it is concluded that it seems unnecessary to introduce a concept like the VLEC in the UTRA RRC protocol for the extension of the SEQUENCE type in the EUTRA RRC protocol.
4
References

[1]
R2-093830 (RAN2-66bis): REL-9 protocol extensions in RRC, Samsung

[2]
ITU-T Rec. X.691 (ISO/IEC 8825-2): ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)

[3]
Oliver Dubuisson: ASN.1 Communication Between Heterogeneous Systems, ISBN: 0-12-633361-0
� The term ExtensionAdditionList is used in the ASN.1 literature [� SEQ reference Dubuisson * MERGEFORMAT �3�] to denote the list of components, or extension additions, added after the extension marker in the SEQUENCE type.

