Page 1

3GPP TSG-RAN2#66b meeting
Tdoc (
R2-093830
Los Angelos, U.S.A, 29 June- 3 July 2009
Agenda Item:

5.8.6
Souce:

Samsung
Title:

REL-9 protocol extensions in RRC
Document for:

Discussion and decision
1 Introduction

This document discusses how to introduce REL-9 protocol extension in RRC i.e. when to apply the critical extention (CE) and non-critical extention (NCE) mechanisms. During the RAN2#62bis meeting, during which it was agreed which protocol extension facilities should be introduced in RRC, there was some discussion on when to use the NCE and when to use the CE mechanism but nothing was really concluded.

In this document we propose that NCE is the primary mechanism for introducing protocol extensions and that the CE mechanism is used only when there is a need to introduce a 'clean' message version. Furthermore, we propose to use a 'recursive' approach for non-critical extensions using 'empty sequences' (i.e. as at the end of messages).

The document includes a CR that also introduces a number of examples illustrating the basics of the extension mechanims.

2 Discussion
2.1 When to use CE and NCE mechanisms
Before entering the discussion of when to apply the CE and NCE mechanism, lets first try to quickly summarise the main characteristics of the two mechanisms.
Main characteristics of NCE mechanism(s):
· an optional empty sequence is used at the end of a container or at the end of the message i.e. when no lenght determinant is needed

· an extension marker is used in other cases

· a receiver that does not comprehend an extension treats the message as if the extension was absent

· it is possible to introduce extensions after the ASN feeze of a release of the RRC protocol

· if it is acceptable that a UE not comprehending the extension ignores it

· otherwise, additional signalling needs to be introduced (e.g. feature indicators), so EUTRAN knows if the UE supports NCEs introduced

· the extensions are pure additions i.e. the signalling of the original fields is not affected

· the extensions are not always placed together with the original field (e.g. in case of sequences)

· extensions using an extension marker introduce additional signalling overhead

· several messages include a significant number of extension markers

· if we would like to support late extensions i.e. extensions to release n while release n+1 is already frozen, we may even have a length determinant per release

Main characteristics of CE mechanism:
· no general error handling has been defined that a receiver shall apply upon receiving a message version that the UE does not comprehend

· critical extensions are not assumed to be introduced after the ASN feeze of a release of the RRC protocol, so EUTRAN knows which message versions the UE supports. No error handling is defined for network errors like EUTRAN sending a not supported message version

· it is possible to introduce extensions after the ASN feeze of a release of the RRC protocol

· additional signalling needs to be introduced (e.g. feature indicators), so EUTRAN knows if the UE supports NCEs introduced

· a critical extension includes a complete re-definition of the message, although a large number of the fields may be the same as in the original message version
· one could argue that the CE increases testing effort since the signalling of the original fields is somewhat affected

In our understanding, the spirit of the earlier discussions on the use of the CE and NCE mechanisms can be summarised as follows:

· A multiplicity of options for the network to signal the protocol extension should be avoided i.e. having CE and a large number of NCE (i.e. in several CE versions/ branches)

· It seems desirable to use the NCE mechanism as the prime mechanism

· The CE mechanism should not be used unless there is a real need to introduce a new clean message version i.e. because either:

· the ASN.1 has become difficult to comprehend due to the large number of extensions placed for from their context

· the overhead associated with NCEs has become significant

We propose to agree the above as the primary guideline when introducing REL-9 extension i.e. in short our proposal is as follows:

Proposal 1
NCE is the primary mechanism for introducing protocol extensions; the CE mechanism is used only when there is a need to introduce a 'clean' message version
2.2 Guidelines/ examples

First of all, the attached CR introduces a guideline related to proposal 1. Furthermore, the attached draft CR includes examples illustrating the basics regarding the use of the critical and non-critical extension mechanisms.

For the case of non-critical extensons supported by empty sequences, some further discussion seems desirable. In general it seems desirable to avoid deep nesting levels that result by introducing all subsequent extensions at the message level i.e. as done in UTRA (see the example below).

-- ASN1START

InterRATHandoverInfo ::= SEQUENCE {

-- This structure is defined for historical reasons, backward compatibility with 44.018

predefinedConfigStatusList

CHOICE {

absent

NULL,

present

PredefinedConfigStatusList

},

uE-SecurityInformation

CHOICE {

absent

NULL,

present

UE-SecurityInformation

},

ue-CapabilityContainer

CHOICE {

absent

NULL,

-- present is an octet aligned string containing IE UE-RadioAccessCapabilityInfo

present

OCTET STRING (SIZE (0..63))

},

-- Non critical extensions

v390NonCriticalExtensions

CHOICE {

absent

NULL,

present

SEQUENCE {

interRATHandoverInfo-v390ext
InterRATHandoverInfo-v390ext-IEs,

v3a0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v3a0ext
InterRATHandoverInfo-v3a0ext-IEs,

laterNonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v3d0ext
InterRATHandoverInfo-v3d0ext-IEs,

-- Container for additional R99 extensions

interRATHandoverInfo-r3-add-ext

BIT STRING

(CONTAINING InterRATHandoverInfo-r3-add-ext-IEs)
OPTIONAL,

v3g0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v3g0ext
InterRATHandoverInfo-v3g0ext-IEs,

v4b0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v4b0ext
InterRATHandoverInfo-v4b0ext-IEs,

v4d0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v4d0ext
InterRATHandoverInfo-v4d0ext-IEs,

-- Reserved for future non critical extension

v590NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v590ext

InterRATHandoverInfo-v590ext-IEs,

v690NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v690ext

InterRATHandoverInfo-v690ext-IEs,

v6b0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v6b0ext

InterRATHandoverInfo-v6b0ext-IEs,

v6e0NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v6e0ext

InterRATHandoverInfo-v6e0ext-IEs,

v770NonCriticalExtensions

SEQUENCE {

interRATHandoverInfo-v770ext

InterRATHandoverInfo-v770ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

}

}

}
-- ASN1STOP

It seems preferrable to adopt a more recursive approach i.e. as illustrated by the following example, which is also included in the attached CR.

-- /example/ ASN1START

RRCMessage-r8-IEs ::=

SEQUENCE {

field1

InformationElement1,

field2

InformationElement2,

field3

InformationElement3

OPTIONAL,
-- Need ON

nonCriticalExtension

RRCMessage-v8x0-IEs

OPTIONAL
-- Need OP

}

RRCMessage-v8x0-IEs ::= SEQUENCE {

 v8x0NonCricticalExtensions SEQUENCE {

 field4

InformationElement4

OPTIONAL,
-- Need OP

 field5

InformationElement5

OPTIONAL
-- Cond C54

 },

nonCriticalExtension

RRCMessage-v9x0-IEs

OPTIONAL
-- Need OP

}

RRCMessage-v9x0-IEs ::= SEQUENCE {

 v9x0NonCricticalExtensions SEQUENCE {

 field6

InformationElement6

OPTIONAL
-- Need ON

 },
 nonCriticalExtensions

SEQUENCE {}

OPTIONAL
-- Need OP

}

-- ASN1STOP

Proposal 2
A 'recursive' approach is used for non-critical extensions using empty sequences (i.e. at the end of messages or within containers)
3 Conclusion & recommendation
This paper includes the following proposals, that RAN2 is requested to conclude:

Proposal 1
NCE is the primary mechanism for introducing protocol extensions; the CE mechanism is used only when there is a need to introduce a 'clean' message version
Proposal 2
A 'recursive' approach is used for non-critical extensions using empty sequences (i.e. at the end of messages or within containers)
RAN2 is also requested to review and conclude on the attached CR, which aims to capture the proposed guideline as well as some protocol extension examples
4 References

[1] R2-083232:
ASN.1 extension mechanisms
Infineon
Disc
3GPP TSG-??? Meeting #nn
(
DocNumber

Location, Country, Date

	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	SpecNumber
	CR
	CRNum
	(

rev
	-
	(

Current version:
	x.y.z
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	

	
	

	Source to WG:
(

	

	Source to TSG:
(

	

	
	

	Work item code:
(

	
	
	Date: (

	dd/mm/yyyy

	
	
	
	
	

	Category:
(

	
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	

	
	

	Summary of change:
(

	

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	

	affected:
	
	
	 Test specifications
	

	
	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

A.4
Extension of the PDU specifications

A.4.1
General principles to ensure compatibility

It is essential that extension of the protocol does not affect interoperability i.e. it is essential that implementations based on different versions of the RRC protocol are able to interoperate. In particular, this requirement applies for the following kind of protocol extensions:

-
Introduction of new PDU types (i.e. these should not cause unexpected behaviour or damage).

-
Introduction of additional fields in a PDUs (i.e. it should be possible to ignore uncomprehended extensions without affecting the handling of the other parts of the message).

-
Introduction of additional values of a field of PDUs. If used, the behaviour upon reception of an uncomprehended value should be defined.

It should be noted that the PDU extension mechanism may depend on the logical channel used to transfer the message e.g. for some PDUs an implementation may be aware of the protocol version of the peer in which case selective ignoring of extensions may not be required.
The non-critical extension mechanism is the primary mechanism for introducing protocol extensions i.e. the critical extension mechanism is used merely when there is a need to introduce a 'clean' message version. Such a need appears when the last message version includes a large number of non-critical extensions, which results in issues like overhead associated with the extension markers, readability.
A.4.2
Critical extension of messages

The mechanisms to critically extend a message are defined in A.3.3. There are both "outer branch" and "inner branch" mechanisms available. The "outer branch" consists of a CHOICE having the name criticalExtensions, with two values, c1 and criticalExtensionsFuture. The criticalExtensionsFuture branch consists of an empty SEQUENCE, while the c1 branch contains the "inner branch" mechanism.

The "inner branch" structure is a CHOICE with values of the form "MessageName-rX-IEs" (e.g., "RRCConnectionReconfiguration-r8-IEs") or "spareX", with the spare values having type NULL. The "-rX-IEs" structures contain the complete structure of the message IEs for the appropriate release; i.e., the critical extension branch for the Rel-10 version of a message includes all Rel-8 and Rel-9 fields (that are not obviated in the later version), rather than containing only the additional Rel-10 fields.
The following guidelines may be used when deciding which mechanism to introduce for a particular message, i.e. only an 'outer branch', or an 'outer branch' in combination with an 'inner branch' including a certain number of spares:

-
For certain messages, e.g. initial uplink messages, messages transmitted on a broadcast channel, critical extension may not be applicable.

-
An outer branch may be sufficient for messages not including any fields.

-
The number of spares within inner branch should reflect the likelihood that the message will be critically extended in future releases (since each release with a critical extension for the message consumes one of the spare values). The estimation of the critical extension likelyhood may be based on the number, size and changeability of the fields included in the message.

-
In messages where an inner branch extension mechanism is available, all spare values of the inner branch should be used before any critical extensions are added using the outer branch.

The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release

-- /example/ ASN1START

-- Original release
RRCMessage ::=

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

c1

CHOICE{

rrcMessage-r8

RRCMessage-r8-IEs,

spare3 NULL, spare2 NULL, spare1 NULL

},

criticalExtensionsFuture

SEQUENCE {}

}

}

-- ASN1STOP

-- /example/ ASN1START

-- Later release
RRCMessage ::=

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

c1

CHOICE{

rrcMessage-r8

RRCMessage-r8-IEs,

rrcMessage-ra

RRCMessage-ra-IEs,

rrcMessage-rb

RRCMessage-rb-IEs,

rrcMessage-re

RRCMessage-re-IEs

},

later

CHOICE {

c2

CHOICE{

rrcMessage-rg

RRCMessage-rg-IEs,

spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,

spare3 NULL, spare2 NULL, spare1 NULL

},

criticalExtensionsFuture

SEQUENCE {}

}

}

}

-- ASN1STOP

A.4.3
Non-critical extension of messages

The mechanisms to extend a message in a non-critical manner are defined in A.3.3. W.r.t. the use of extension markers, the following additional guidelines apply:

-
The extension marker ("…") is the primary non-critical extension mechanism that is used unless a length determinant is not required. Examples of cases where a length determinant is not required:

-
at the end of a message,

-
at the end of a structure contained in a BIT STRING or OCTET STRING

-
Extension markers within SEQUENCE

-
Extension markers are primarily, but not exclusively, introduced at the higher nesting levels

-
Extension markers are introduced for a SEQUENCE comprising several fields as well as for information elements which extension would result in complex structures without it (e.g. re-introducing another list)

-
Extension markers are introduced to make it possible to maintain important information structures e.g. parameters relevant for one particular RAT

-
Extension markers are also used for size critical messages (i.e. messages on BCCH, PCCH and CCCH), although introduced somewhat more carefully

-
Extension markers within ENUMERATED

-
Spare values are used until the number of values reaches the next power of 2, while the extension marker caters for extension beyond that limit

-
Extension markers within CHOICE:

-
Extension markers are introduced when extension is foreseen and when comprehension is not required by the receiver i.e. behaviour is defined for the case where the receiver cannot comprehend the extended value (e.g. ignoring an optional CHOICE field). It should be noted that defining the behaviour of a receiver upon receiving a not comprehended choice value is not required if the sender is aware whether or not the receiver supports the extended value.
There are no additional guidelines w.r.t. the use of non-critical extensions at the end of a message/ of a field contained in an OCTET or BIT STRING.
The following example illustrates the use of the extension marker for a number of elementary cases (sequence, enumerated, choice).
NOTE
In case there is a need to support further extensions of release n while the ASN.1 of release (n+1) has been frozen, without requiring the the release n receiver to support decoding of release (n+1) extensions, more advanced mechanisms are needed e.g. including multiple extension markers.
-- /example/ ASN1START

InformationElement1 ::=

SEQUENCE {

field1

ENUMERATED {value1, value2, value3, ..., value4 },

field2

CHOICE {

field2a

InformationElement12a,

field2b

InformationElement12b,

...,

field2c

InformationElement12c

},

...,

field3

InformationElement13

}

-- ASN1STOP

The following example illustrates the use of non-critical extensions at the end of the message or at the end of a field that is contained in a BIT or OCTET STRING i.e. when an empty sequence is used.
-- /example/ ASN1START

RRCMessage-r8-IEs ::=

SEQUENCE {

field1

InformationElement1,

field2

InformationElement2,

field3

InformationElement3

OPTIONAL,
-- Need ON

nonCriticalExtension

RRCMessage-v8x0-IEs

OPTIONAL
-- Need OP

}

RRCMessage-v8x0-IEs ::= SEQUENCE {

 v8x0NonCricticalExtensions SEQUENCE {

 field4

InformationElement4

OPTIONAL,
-- Need OP

 field5

InformationElement5

OPTIONAL
-- Cond C54

 },

nonCriticalExtension

RRCMessage-v9x0-IEs

OPTIONAL
-- Need OP

}

RRCMessage-v9x0-IEs ::= SEQUENCE {

 v9x0NonCricticalExtensions SEQUENCE {

 field6

InformationElement6

OPTIONAL
-- Need ON

 },
 nonCriticalExtensions

SEQUENCE {}

OPTIONAL
-- Need OP

}

-- ASN1STOP

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

Page 7

